
Bachelor of Science in Software Engineering

Preventing Data Loss using Raft Consensus

Algorithm in a Decentralized Database System

Md. Muhtaseen Hafiz - 180042102

A.K.M Nafiz Zaman - 180042115

Md Shadman Shafi - 180042135

Department of Computer Science and Engineering (CSE)

Islamic University of Technology (IUT)

May, 2023

Declaration of Authorship

This is to certify that the work presented in this thesis is the outcome of the

analysis and experiments carried out by Md. Muhtaseen Hafiz, A.K.M Nafiz Za-

man and Md. Shadman Shafi under the supervision of Faisal Hussain, Assistant

Professor of the Department of Computer Science and Engineering (CSE), Islamic

University of Technology (IUT), Dhaka, Bangladesh. It is also declared that nei-

ther of this thesis nor any part of this thesis has been submitted anywhere else for

any degree or diploma. Information derived from the published and unpublished

work of others has been acknowledged in the text and a list of references is given.

Authors:

Md. Muhtaseen Hafiz

Student ID - 180042102

A.K.M Nafiz Zaman

Student ID - 180042115

Md. Shadman Shafi

Student ID - 180042135

Supervisor:

Faisal Hussain

Assistant Professor

Department of Computer Science and Engineering

Islamic University of Technology (IUT)

Acknowledgement

We would like to express our grateful appreciation for Faisal Hussain, Assistant

Professor, Department of Computer Science & Engineering, IUT for being our

adviser and mentor. His motivation, suggestions and insights for this research

have been invaluable. Without his support and proper guidance this research

would never have been possible. His valuable opinion, time and input provided

throughout the thesis work, from first phase of thesis topics introduction, subject

selection, proposing algorithm, modification till the project implementation and

finalization which helped us to do our thesis work in proper way. We are really

grateful to him.

Abstract

In today’s digital era, decentralized database management systems have gained

significant attention due to their ability to provide scalability, fault tolerance, and

improved performance. However, ensuring data integrity, preventing data loss,

and maintaining data consistency in such systems remain challenging tasks. This

thesis addresses these challenges by proposing a peer-to-peer gossip-based solution

that leverages the Raft consensus algorithm and replicated log method.

The proposed solution focuses on making each node in the database cluster a

witness to transactions, allowing for consensus on the current state of the database.

By utilizing gossip-based protocols, transaction information is disseminated among

nodes, ensuring that updates reach all relevant participants. The Raft consensus

algorithm is employed to achieve agreement on the committed transactions, while

the replicated log method synchronizes transaction logs across all nodes.

The objectives of this thesis include preventing data loss, maintaining data con-

sistency, and meeting high transaction and view request targets. With a target

transaction rate of 1000 transactions per second and a target view request rate of

10000 requests per second, the solution aims to deliver robust performance and

reliability. By combining the peer-to-peer gossip-based approach, Raft consensus

algorithm, and replicated log method, the proposed solution offers benefits such

as fault tolerance, scalability, and data consistency.

The thesis contributes to the field by addressing the limitations of current database

systems and proposing an innovative solution that ensures data integrity in de-

centralized environments. The limitations and complexities of Direct Mail, Anti-

Entropy, and Rumor Mongering techniques are analyzed, leading to the devel-

opment of a more effective and efficient solution. The solution’s architecture,

mechanisms, and protocols are designed to meet the specified targets and provide

a reliable foundation for decentralized database management systems.

Through simulations and performance evaluations, the proposed solution demon-

strates its effectiveness in preventing data loss, maintaining data consistency, and

meeting the specified transaction and view request targets. The results highlight

the solution’s scalability, fault tolerance, and ability to handle high transaction

rates.

In conclusion, this thesis presents a peer-to-peer gossip-based solution that lever-

ages the Raft consensus algorithm and replicated log method to prevent data loss

and ensure data consistency in decentralized database management systems. The

solution offers a robust and scalable approach, addressing the limitations of exist-

ing techniques. With its potential applications in various domains, the proposed

solution contributes to the advancement of decentralized database management

systems, providing a foundation for reliable and high-performance data storage

and processing.

Contents

1 Introduction 5

1.1 Overview . 5

1.2 Problem Statement . 6

1.3 Motivation . 7

1.4 Thesis Objective . 8

1.5 Thesis Contributions . 9

1.6 Organization of the Thesis . 11

2 Literature Review 13

2.1 Chain Replication for Supporting High Throughput and Availabil-

ity [3] . 13

2.1.1 Limitations . 14

2.2 A peer-to-peer consensus algorithm to enable storage reliability for

a decentralized distributed database [7] 16

2.2.1 Summary . 16

3 Background 17

3.1 Data . 17

3.2 Data Loss . 19

3.3 Data Storage Methods . 21

3.3.1 Relational databases . 21

3.3.2 NoSQL Databases . 22

3.3.3 Object-Oriented Databases 22

3.3.4 In-Memory Databases . 22

3.3.5 Columnar Databases . 22

3.3.6 Cloud-based Databases . 23

3.3.7 NewSQL Databases . 23

3.3.8 Decentralized Database Systems 23

3.4 Main Problems of current database systems 24

1

3.4.1 Scalability . 25

3.4.2 Performance Bottlenecks . 25

3.4.3 Data Integration . 25

3.4.4 Data Security and Privacy 25

3.4.5 High Availability and Fault Tolerance 26

3.4.6 Real-time Analytics . 26

3.4.7 Data Consistency . 26

3.4.8 Concurrency Control . 27

3.4.9 Single Point of Failure . 27

3.4.10 Data Security . 27

3.4.11 Privacy Protection . 28

3.5 Ways of Data loss . 28

3.5.1 Hardware or System Failures 28

3.5.2 Software or Application Failures 29

3.5.3 Human Errors . 29

3.5.4 Malicious Attacks . 29

3.5.5 Natural Disasters . 30

3.5.6 Data Corruption . 30

3.6 Data Loss prevention strategies . 30

3.6.1 Regular Data Backup . 31

3.6.2 Data Replication . 31

3.6.3 Redundant Storage Systems 31

3.6.4 Disaster Recovery Planning 32

3.6.5 Data Validation and Integrity Checks 32

3.6.6 Security Measures . 32

3.6.7 User Education and Training 32

3.7 Database Backup . 33

3.7.1 Importance of Database Backup 33

3.7.2 Backup Strategies . 34

3.7.3 Considerations for Database Backup 35

2

3.7.4 Limitations . 35

3.8 Database Replication . 37

3.8.1 Overview of Database Replication 38

3.8.2 Benefits of Database Replication 38

3.8.3 Approaches to Database Replication 39

3.8.4 Considerations for Database Replication 40

3.8.5 Limitations . 41

3.9 Strategies to implement . 43

3.9.1 Direct Mail . 43

3.9.2 Limitations . 44

3.9.3 Complexities . 44

3.9.4 Anti-Entropy . 45

3.9.5 Limitations . 45

3.9.6 Complexities . 46

3.9.7 Rumor Mongering . 46

3.9.8 Limitations . 46

3.9.9 Complexities . 47

4 Proposed Structure 48

4.0.1 Replicated LogChain Method 48

4.0.2 Client Authenticity . 48

4.0.3 Reaching Consensus with Raft Algorithm Instead of Ac-

knowledgement of Database Commit 49

4.1 Benefits of our solution . 49

4.2 Proposed Architecture . 51

4.3 Client/Maintainer . 52

4.4 Entrypoint RPC . 52

4.5 Verifier/Node(Cluster) . 53

4.6 Execution Scenarios . 53

5 Simulation 55

3

5.1 Implementation Architecture . 55

5.2 simulation results . 55

6 Result Analysis 56

7 Future Works 58

8 Conclusion 59

4

1 Introduction

Data loss refers to the irreversible disappearance or corruption of data, leading

to the unavailability of crucial information and potential disruptions to business

operations.[1] In decentralized database management systems, where data is dis-

tributed across multiple nodes, the risk of data loss is amplified due to the in-

creased complexity and reliance on network communications. When a node fails

or is compromised, there is a potential for losing the data stored on that node,

jeopardizing the system’s overall integrity. In today’s digital age, databases play a

pivotal role in storing and managing vast amounts of critical information. Sensi-

tive data loss can have a negative impact on an organization’s long-term stability

as well as cause severe reputational and financial damage [2]. However, ensuring

data integrity and availability is a persistent challenge, particularly in decentral-

ized database management systems where multiple nodes collaborate to store and

process data. Data loss, caused by node failures, network disruptions, or mali-

cious attacks, poses a significant risk to the reliability and trustworthiness of such

systems. Therefore, it becomes crucial to develop robust mechanisms that prevent

data loss and maintain data consistency in decentralized environments.

1.1 Overview

Data loss is a critical concern in today’s digital world, where information is the

backbone of businesses and organizations.[2] The need for reliable and secure data

management systems has never been more crucial. The introduction provides an

overview of the challenges associated with data loss in decentralized databases

and emphasizes the importance of developing robust mechanisms to prevent such

loss. It highlights the role of databases in storing and managing vast amounts of

crucial information and discusses the increased risk of data loss in decentralized

environments due to the complexity and reliance on network communications. The

primary objective of this research is to prevent data loss and maintain data con-

sistency in decentralized database management systems. The primary objective of

5

this research is to prevent data loss and maintain data consistency in decentralized

database management systems.

1.2 Problem Statement

In decentralized database management systems, ensuring data integrity and avail-

ability is a persistent challenge due to the distributed nature of data storage and

processing. The risk of data loss is amplified in these systems, where data is dis-

tributed across multiple nodes and relies on network communications. When a

node fails or is compromised, the data stored on that node becomes inaccessible,

potentially leading to data loss and disruptions in business operations. Therefore,

there is a crucial need to develop robust mechanisms that prevent data loss and

maintain data consistency in decentralized environments.

The existing solutions for data loss prevention and data consistency in centralized

database management systems do not directly translate to decentralized systems.

Decentralized environments introduce complexities such as node failures, network

partitions, and malicious attacks, making it challenging to ensure the reliability

and trustworthiness of the data stored and processed across multiple nodes.

The challenge lies in designing and implementing a decentralized database man-

agement system that can prevent data loss and maintain data consistency in the

face of node failures, network disruptions, and malicious actions. Such a system

must provide mechanisms to replicate data across nodes, ensure consensus on the

order and validity of transactions, and recover from failures while maintaining

high performance and availability.

Additionally, achieving high transaction rates and accommodating a large number

of view requests further adds to the complexity. The system needs to handle

a high volume of transactions while ensuring timely access to data for various

read operations, such as queries and views, without sacrificing data integrity or

availability.

6

Therefore, the problem statement is to develop a decentralized database manage-

ment system that effectively prevents data loss, maintains data consistency, and

supports high transaction rates and view request volumes. The proposed system

should leverage appropriate replication and consensus mechanisms to ensure fault

tolerance, data redundancy, and timely access to data, while effectively addressing

the challenges specific to decentralized environments.

Solving this problem will contribute to the development of robust and reliable de-

centralized database management systems, enabling businesses and organizations

to securely store and process data across multiple nodes while maintaining data

integrity, availability, and performance.

1.3 Motivation

The motivation behind this thesis stems from the increasing reliance on decen-

tralized database management systems and the critical need to prevent data loss

while maintaining data consistency. In today’s digital landscape, businesses and

organizations handle vast amounts of data that are crucial for their operations,

decision-making processes, and customer interactions. Any loss or corruption of

this data can have severe consequences, including financial losses, reputational

damage, and disruptions to business continuity.

Decentralized database management systems offer numerous advantages, such as

scalability, fault tolerance, and improved performance, by distributing data across

multiple nodes. However, these systems also introduce unique challenges in terms

of data consistency, data loss prevention, and synchronization among distributed

replicas. Existing approaches to data loss prevention and data consistency in

decentralized systems have their limitations and may not be able to meet the

increasing demands of modern applications and workloads.

Hence, the primary motivation of this thesis is to propose a robust solution that

addresses the challenges of data loss prevention and data consistency in decentral-

ized database management systems. By leveraging the peer-to-peer gossip-based

7

approach, Raft consensus algorithm, and replicated log method, we aim to de-

velop a solution that ensures data integrity, minimizes the risk of data loss, and

guarantees consistent views of the database across all nodes.

Moreover, the motivation also arises from the need for high-performance systems

that can handle significant transaction rates and view requests. The specified tar-

gets of 1000 transactions per second and 10000 view requests per second reflect the

requirements of modern applications that operate in dynamic and demanding en-

vironments. Our solution aims to meet these targets while ensuring the reliability

and consistency of data.

By addressing the limitations and complexities of current database systems, this

thesis seeks to contribute to the advancement of decentralized database manage-

ment systems and provide practical solutions for data loss prevention and data

consistency. The proposed solution has the potential to benefit various domains,

including finance, healthcare, e-commerce, and distributed applications, where

data integrity and availability are of utmost importance.

In conclusion, the motivation behind this thesis is driven by the critical need to

prevent data loss, ensure data consistency, and meet the performance demands of

decentralized database management systems. By proposing an innovative solution

that combines the peer-to-peer gossip-based approach, Raft consensus algorithm,

and replicated log method, we aim to make significant contributions to the field

and address the challenges faced by modern decentralized systems.

1.4 Thesis Objective

The objective of this thesis is to develop and evaluate a robust solution for pre-

venting data loss and maintaining data consistency in a decentralized database

management system. The proposed solution aims to address the challenges spe-

cific to decentralized environments, including node failures, network disruptions,

and malicious attacks while ensuring high transaction rates and accommodating

a large number of view requests.

8

The primary objectives of this research are as follows:

1. Design a decentralized database management system that leverages a peer-

to-peer gossip protocol for information dissemination and the Raft Consensus

Algorithm on the Replicated Log Method for achieving consensus on the

current state of the database. This design will provide a resilient and efficient

approach to data replication, fault tolerance, and recovery.

2. Implement the proposed solution and integrate it into a decentralized database

management system prototype. The implementation should consider key

factors such as scalability, performance, and fault tolerance to ensure that

the system can handle high transaction rates and view request volumes.

3. Evaluate the performance and effectiveness of the implemented solution

through comprehensive testing and experimentation. The evaluation should

consider factors such as transaction throughput, latency, fault tolerance, and

scalability. The results will provide insights into the feasibility and efficiency

of the proposed approach in preventing data loss and maintaining data con-

sistency in a decentralized environment.

4. Compare the performance and effectiveness of the proposed solution with

existing approaches and highlight the advantages and limitations of the pro-

posed solution. This comparative analysis will contribute to the under-

standing of the proposed solution’s potential impact and its positioning in

the context of existing research and practical applications.

1.5 Thesis Contributions

This thesis makes the following contributions to the field of decentralized database

management systems:

1. Proposed Solution: This thesis presents a novel solution for preventing data

loss and maintaining data consistency in decentralized environments. The

proposed solution leverages a peer-to-peer gossip-based protocol for infor-

mation dissemination and the Raft Consensus Algorithm on the Replicated

9

Log Method for achieving consensus on the current state of the database.

This design offers a robust and efficient approach to data replication, fault

tolerance, and recovery in a decentralized context.

2. System Implementation: The thesis includes the implementation of the pro-

posed solution as a prototype of a decentralized database management sys-

tem. The implementation considers crucial factors such as scalability, perfor-

mance, and fault tolerance to ensure the system can handle high transaction

rates and accommodate a large number of view requests. The implemented

system serves as a tangible demonstration of the proposed solution’s feasi-

bility and functionality.

3. Performance Evaluation: Extensive testing and experimentation are con-

ducted to evaluate the performance and effectiveness of the implemented

solution. The evaluation considers metrics such as transaction throughput,

latency, fault tolerance, and scalability. The results provide insights into the

system’s efficiency in preventing data loss, maintaining data consistency, and

handling high transaction rates and view request volumes in a decentralized

environment.

4. Comparative Analysis: The thesis includes a comparative analysis of the pro-

posed solution with existing approaches for preventing data loss and main-

taining data consistency in decentralized database management systems.

This analysis highlights the advantages and limitations of the proposed so-

lution and provides a comprehensive understanding of its potential impact

and practical significance. It offers valuable insights for researchers, practi-

tioners, and system designers in selecting appropriate mechanisms for data

loss prevention in decentralized environments.

5. Practical Implications: The findings of this research have practical impli-

cations for various domains that rely on decentralized databases, such as

finance, healthcare, and e-commerce. The proposed solution contributes to

the development of robust and reliable decentralized database management

10

systems, ensuring the integrity and availability of crucial information. The

research outcomes can guide the design and implementation of decentralized

databases, providing organizations with a foundation for secure and efficient

data management.

By making these contributions, this thesis advances the knowledge and under-

standing of data loss prevention and data consistency maintenance in decentralized

database management systems. It provides valuable insights and practical solu-

tions to address the challenges specific to decentralized environments, ultimately

enhancing the reliability, security, and performance of decentralized databases in

real-world applications.

1.6 Organization of the Thesis

The organization of the thesis is as follows:

Chapter 1 of the thesis provides an overview of the thesis, including the problem

statement, the motivation behind the research, the objective of the thesis, and

the contributions it aims to make. The section concludes with an outline of the

organization of the thesis.

In chapter 2, the existing literature and studies related to the topic of the thesis are

discussed. It provides a comprehensive review of the relevant research conducted

by other scholars in the field.

Chapter 3: Background, presents the background information necessary for under-

standing the thesis. It covers data, data loss, and various data storage methods,

including relational databases, NoSQL databases, object-oriented databases, in-

memory databases, columnar databases, cloud-based databases, NewSQL databases,

and decentralized database systems. Additionally, it discusses the main problems

encountered in current database systems, such as scalability, performance bot-

tlenecks, data integration, data security and privacy, high availability and fault

tolerance, real-time analytics, data consistency, concurrency control, and more.

11

Chapter 4: Proposed Solution, in this chapter, the proposed solution to address

the problems identified in Chapter 3 is presented. It discusses the use of a peer-

to-peer gossip-based approach, witnessing transactions, reaching consensus with

the Raft algorithm, and utilizing the replicated log method. The chapter also

highlights the benefits of the proposed solution.

Chapter 5: Conclusion, the final chapter summarizes the main findings of the thesis

and provides a conclusion. It discusses the contributions made by the research and

suggests potential areas for future exploration or improvement.

By following this organization, the thesis effectively introduces the research prob-

lem, explores relevant studies, provides the necessary background information,

presents the proposed solution, and concludes the findings, ensuring a logical and

coherent structure throughout the document.

12

2 Literature Review

Database replication is a critical technique used in distributed database systems

to ensure data availability, improve performance, and provide fault tolerance. It

involves the process of synchronizing or copying data from a source database to

one or more target databases. This replication process allows for the creation of

redundant copies of data, which can be distributed across multiple servers or loca-

tions. Any modifications made to the source database, such as inserts, updates, or

deletes, are captured and propagated to the target databases in a controlled and

consistent manner. This ensures that the data remains consistent and up-to-date

across all replicas. Replication can be implemented using various strategies, such

as master-slave replication, multi-master replication, or peer-to-peer replication,

each with its own advantages and considerations. Database replication plays a vi-

tal role in achieving high availability, scalability, and resilience in modern database

systems, enabling organizations to meet the demands of their applications and

handle large volumes of data effectively.

2.1 Chain Replication for Supporting High Throughput

and Availability [3]

Chain replication is an innovative method used to manage groups of fail-stop

storage servers. Its purpose is to facilitate the operation of extensive storage ser-

vices that require both high throughput and availability while maintaining strong

consistency guarantees. In addition to describing the protocols used in chain

replication, the study includes simulation experiments to analyze the performance

features of a preliminary implementation. The experiments investigate aspects

such as throughput, availability, and various object placement strategies, includ-

ing those based on distributed hash table routing. Windows Azure Store uses this

architecture to replicate a database among its services[4].

13

Figure 1: A chain in a replicated chain based database replication system

Reply Generation

The response to each request is created and transmitted by the last element in the

chain.

Query Processing

Every query request is directed to the last element in the chain and processed

there as a single unit, utilizing the replica of objID stored at that location.

Update Processing

Each update request is sent to the first element in the chain. It is processed there

as a single unit using the replica of objID located at the head. The changes in

state are then forwarded through a dependable FIFO link to the next element in

the chain, where it is processed and forwarded again. This process continues until

the request is handled by the last element in the chain.

2.1.1 Limitations

Although this method ensures consistency among all the databases, there is a

big delay in the request being propagated to all the servers according to their

calculations.

There are multiple studies to efficiently maintain a primary backup for data avail-

ability [5] [6] which focuses on keeping a backup of the primary database which

also faces the issue of getting acknowledgement from all the available databases.

14

λd = 50 ms in the head

λd = 20 ms in other servers

λ = 1 ms in the head

where,

λd = Committing a query to the database

λ = network propagation delay

In total, around 110 ms for one query update for making one transaction which

is very slow. The acknowledgement of the commit from all the servers to process

the transaction is somewhat very inefficient.

15

2.2 A peer-to-peer consensus algorithm to enable storage

reliability for a decentralized distributed database [7]

Figure 2: Layered architecture of the distributed database

This research paper addressed the crucial issue of trust within a particular type

of distributed system, which focused on a fully decentralized distributed database.

The primary objective was to enhance the dependability of data storage by promptly

identifying and excluding any compromised or malicious nodes.

To accomplish this, they proposed an innovative approach to a distributed con-

sensus algorithm that is tailor-made for the Chord DHT. The Chord DHT served

as the fundamental framework for peer-to-peer communication within the decen-

tralized database server.

Notably, their solution for eliminating malicious nodes demonstrates exceptional

efficiency, requiring only a minimal exchange of additional messages. Further-

more, their approach can be seamlessly applied to decentralized distributed sys-

tems based on DHTs, broadening its potential utilization beyond the confines of

our specific database scenario. figure.

2.2.1 Summary

The paper presents a flexible decentralized distributed database that aims to en-

sure reliable storage. This database relies on the Chord DHT as a logical infras-

16

tructure, facilitating data location and persistence through replication. The decen-

tralized database comprises three main components: the query dispatching layer,

based on DNS static load balancing; the Chord layer, which separates the client

from storage nodes; and the storage nodes themselves, running non-distributed

versions of database servers.

The database adopts a simple data consistency model, propagating changes to each

replica upon data modification. It supports INSERTs, SELECTs, and DELETEs

but lacks UPDATE functionality. The absence of UPDATEs simplifies replica

consistency, with DELETEs requiring the removal of all corresponding replicas.

While the decentralized database demonstrates better handling of node volatil-

ity and data persistence compared to solutions like MySQL Cluster, reliability

concerns arise due to potentially malicious Chord nodes capable of concealing or

altering data. Traditional methods like authentication with a centralized server

undermine the advantages of a fully decentralized storage system. Alternative

methods exist for identifying malicious nodes within decentralized systems, al-

though they may be more complex to implement. These methods leverage collab-

oration between nodes and are rooted in game theory and distributed consensus.

3 Background

In this section, we provide a comprehensive overview of the relevant studies and ex-

isting literature that form the foundation for our research on data loss prevention.

These studies contribute valuable insights and knowledge in the field, addressing

various aspects related to data loss and prevention strategies. By reviewing these

studies, we gain a deeper understanding of the challenges and existing solutions,

which helps to contextualize and inform our own research.

3.1 Data

Data plays a pivotal role in today’s digital age, serving as the foundation for

decision-making, analysis, and operations across various domains [8]. In the con-

17

text of database management systems, data represents the structured and or-

ganized information that is stored, processed, and retrieved by applications and

users. It encompasses a wide range of entities, such as records, documents, multi-

media files, and more, that collectively form the informational backbone of orga-

nizations and systems.

Data holds immense value as it represents the knowledge, insights, and experiences

accumulated by individuals, businesses, and societies.[9] It serves as the basis

for critical operations, including financial transactions, inventory management,

customer relationship management, and scientific research. As such, the integrity,

availability, and confidentiality of data are of utmost importance to ensure the

smooth functioning and success of organizations.

Integrity refers to the accuracy, consistency, and trustworthiness of data. It ensures

that the information stored in the database is reliable and free from errors or

unauthorized modifications. Data integrity is crucial to maintain the validity

and reliability of business processes, analytical reports, and decision-making.[10]

Any loss or corruption of data can have severe consequences, leading to incorrect

insights, disrupted operations, and compromised trust.

Availability refers to the accessibility of data when needed. It implies that autho-

rized users and applications can retrieve and interact with the data in a timely

and uninterrupted manner. High availability is essential to support real-time op-

erations, online transactions, and responsive user experiences. Data unavailability

can result in service disruptions, financial losses, and negative impacts on customer

satisfaction and trust.

Confidentiality relates to the protection of sensitive or private data from unau-

thorized access or disclosure. In many domains, such as healthcare, finance, and

personal information management, data confidentiality is crucial to comply with

legal and ethical requirements. Breaches in data confidentiality can lead to privacy

violations, identity theft, reputational damage, and legal repercussions.[11]

18

In decentralized database management systems, the challenges related to data

integrity, availability, and confidentiality are magnified due to the distributed na-

ture of data storage and processing. The reliance on network communications and

the presence of multiple nodes introduce complexities and vulnerabilities. The

risk of data loss increases with node failures, network disruptions, and potentially

malicious actions.[12]

Addressing these challenges requires the development of robust mechanisms for

data replication, fault tolerance, and recovery. Solutions must ensure that data

remains consistent across multiple nodes, even in the presence of failures or in-

consistencies in communication. Moreover, mechanisms must enable efficient and

secure access to data, accommodating high transaction rates and a large number

of view requests while maintaining data integrity and availability.

By addressing the complexities and challenges associated with data in decentral-

ized environments, this thesis aims to contribute to the development of reliable

and efficient decentralized database management systems. The proposed solution

focuses on preventing data loss, maintaining data consistency, and enhancing the

overall reliability and performance of decentralized databases, ultimately ensuring

the integrity and availability of crucial information for organizations and users.

3.2 Data Loss

Data loss refers to the irreversible disappearance or corruption of data, leading

to the unavailability and potential destruction of critical information. It is a sig-

nificant concern for organizations and individuals alike, as data loss can have se-

vere consequences, including financial losses, operational disruptions, reputational

damage, and legal ramifications.

In the context of decentralized database management systems, data loss poses an

even greater risk due to the distributed nature of data storage and processing. In

these systems, data is distributed across multiple nodes, and each node holds a

portion of the overall data set. This distribution is designed to enhance scalability,

19

fault tolerance, and performance. However, it also introduces vulnerabilities and

complexities that can result in data loss.

Several factors contribute to the risk of data loss in decentralized environments.

Node failures, whether due to hardware malfunctions, software errors, or power

outages, can lead to the loss of data stored on that particular node. Network

disruptions, such as connectivity issues or network partitions, can prevent data

synchronization and replication across nodes, potentially resulting in data inconsis-

tencies or loss. Additionally, malicious attacks, including hacking, data breaches,

or ransomware, can compromise the security and integrity of data, leading to data

loss or unauthorized access.

The consequences of data loss can be far-reaching. In business settings, orga-

nizations may lose valuable customer information, financial records, intellectual

property, or transactional data. This can lead to financial setbacks, customer dis-

satisfaction, legal complications, and damage to the organization’s reputation. In

sectors such as healthcare or research, data loss can have life-threatening implica-

tions, as critical patient data or scientific findings may be permanently destroyed

or become inaccessible.

Preventing data loss in decentralized database management systems requires ro-

bust mechanisms and strategies. Data replication is a fundamental approach to

mitigate the risk of data loss by creating redundant copies of data across multiple

nodes. This redundancy ensures that even if one node fails, the data can still

be retrieved from other nodes, minimizing the impact of data loss. Additionally,

implementing fault tolerance mechanisms such as backup systems, data recovery

procedures, and disaster recovery plans can help mitigate the impact of data loss

and expedite the restoration process.

Furthermore, implementing strong security measures, including access controls,

encryption, and intrusion detection systems, can protect data from unauthorized

access and mitigate the risk of data loss due to malicious attacks. Regular data

20

backups, both locally and off-site, can provide additional layers of protection,

ensuring that data can be restored even in the event of catastrophic failures.

The research presented in this thesis aims to develop a solution that effectively

prevents data loss in a decentralized database management system. By leveraging

a peer-to-peer gossip-based protocol and the Raft Consensus Algorithm on the

Replicated Log Method, the proposed solution aims to ensure data replication,

fault tolerance, and recovery mechanisms that mitigate the risk of data loss and

maintain data consistency in the face of node failures, network disruptions, and

malicious actions. The objective is to provide organizations with a reliable and

resilient decentralized database management system that minimizes the likelihood

and impact of data loss, ensuring the integrity, availability, and confidentiality of

critical information.

3.3 Data Storage Methods

The choice of a database storage system depends on specific requirements such

as data volume, access patterns, scalability, consistency, and performance needs.

Each type of database storage system has its strengths and trade-offs, and the

selection should be based on a thorough analysis of the application’s needs and

the desired characteristics of the data management solution.[13]

3.3.1 Relational databases

Relational databases are based on the relational model and have been widely used

for decades. They store data in tables with predefined schemas, where relation-

ships between tables are defined through keys. Examples of popular RDBMS in-

clude MySQL, Oracle Database, and Microsoft SQL Server. RDBMS offer strong

data consistency, transactional support, and support for complex querying using

SQL.

21

3.3.2 NoSQL Databases

NoSQL databases are designed to handle large-scale, distributed, and unstruc-

tured data. Unlike RDBMS, they do not adhere to a fixed schema and offer

flexible data models. NoSQL databases are classified into different types, includ-

ing document-oriented databases (e.g., MongoDB), key-value stores (e.g., Redis),

columnar databases (e.g., Apache Cassandra), and graph databases (e.g., Neo4j).

NoSQL databases excel in scalability, high availability, and performance but may

sacrifice strong consistency guarantees.

3.3.3 Object-Oriented Databases

Object-oriented databases (OODBMS) store data in the form of objects, simi-

lar to object-oriented programming languages. They provide better support for

complex data structures and encapsulate both data and behavior. OODBMS of-

fer more natural mapping for object-oriented applications, enabling direct storage

and retrieval of objects without the need for complex mapping to relational tables.

Examples of OODBMS include db4o and Versant.

3.3.4 In-Memory Databases

In-memory databases (IMDB) store data entirely in the main memory, providing

fast data access and query processing. They eliminate disk I/O bottlenecks and

are well-suited for applications requiring low-latency, high-throughput operations.

IMDBs often employ techniques like data compression and caching to optimize

memory utilization. Examples of in-memory databases include Redis, Memcached,

and Apache Ignite.

3.3.5 Columnar Databases

Columnar databases store data in a column-oriented fashion rather than the tra-

ditional row-based storage of RDBMS. They offer improved query performance

for analytical workloads, as they only read the necessary columns for a query,

reducing I/O overhead. Columnar databases excel in handling large datasets and

22

performing complex analytical queries efficiently. Popular columnar databases

include Apache Cassandra, Apache HBase, and Google Bigtable.

3.3.6 Cloud-based Databases

Cloud-based databases are hosted on cloud platforms and provide scalable and on-

demand database services. They offer the benefits of automatic scalability, high

availability, and reduced administrative overhead. Examples include Amazon Web

Services (AWS) DynamoDB, Google Cloud Spanner, and Microsoft Azure Cosmos

DB. Cloud-based databases are well-suited for cloud-native applications and can

seamlessly integrate with other cloud services.

3.3.7 NewSQL Databases

NewSQL databases aim to bridge the gap between traditional RDBMS and NoSQL

databases. They provide the scalability and fault tolerance of NoSQL databases

while maintaining ACID (Atomicity, Consistency, Isolation, Durability) proper-

ties. NewSQL databases optimize distributed query processing and offer hori-

zontal scalability without compromising on data consistency. Examples include

CockroachDB, NuoDB, and TiDB.

3.3.8 Decentralized Database Systems

Decentralized database systems are designed to distribute data across multiple

nodes in a network, eliminating the need for a central authority or single point

of failure.[14] Each node in a decentralized database system stores a portion of

the data, and coordination mechanisms are employed to ensure data consistency

and availability. These systems leverage peer-to-peer (P2P) architectures and

distributed consensus algorithms to achieve fault tolerance and scalability.

Blockchain-based databases, such as Bitcoin and Ethereum, are prominent exam-

ples of decentralized databases. They utilize distributed ledgers and consensus

mechanisms to maintain a decentralized and tamper-resistant record of transac-

23

tions. Blockchain databases are characterized by their immutability, transparency,

and resilience against malicious attacks.

Other decentralized database systems, such as IPFS (InterPlanetary File System)

and BigchainDB, provide decentralized storage and retrieval of data while offering

features like content addressing, data versioning, and distributed querying. These

systems aim to address the challenges of data integrity, availability, and privacy in

decentralized environments, enabling peer-to-peer data sharing and collaboration

without relying on a central authority.

Decentralized database systems offer benefits such as increased data resilience, cen-

sorship resistance, and improved fault tolerance. They are particularly suitable for

applications that require trustless interactions, data sovereignty, and distributed

governance. However, they also present challenges related to consensus protocols,

data synchronization, and performance overhead due to the decentralized nature

of data storage and processing.

The research presented in this thesis focuses on addressing the challenges spe-

cific to decentralized database management systems. By leveraging a peer-to-peer

gossip-based protocol and the Raft Consensus Algorithm on the Replicated Log

Method, the proposed solution aims to provide a robust and efficient approach to

data replication, fault tolerance, and recovery in decentralized environments. The

objective is to ensure data consistency, prevent data loss, and enhance the overall

reliability and performance of decentralized databases.

3.4 Main Problems of current database systems

Current database systems, while highly effective and widely used, still face several

challenges that impact their performance, scalability, and ability to meet evolv-

ing data management needs. This section highlights some of the main problems

encountered in current database systems.

24

3.4.1 Scalability

Scalability refers to a database system’s ability to handle increasing data volumes,

user loads, and transaction rates without compromising performance.[15] Tradi-

tional database systems often struggle to scale horizontally due to their reliance

on centralized architectures and rigid schemas. Scaling up hardware resources can

be expensive and may not provide a linear performance improvement. Addition-

ally, ensuring data consistency and maintaining high availability across distributed

environments pose significant challenges.

3.4.2 Performance Bottlenecks

Database systems frequently encounter performance bottlenecks, such as slow

query execution, inefficient indexing, or disk I/O limitations. As data volumes

grow and complex analytical queries are executed, these bottlenecks can severely

impact response times and overall system performance. Improving performance

often requires advanced optimization techniques, query tuning, and data parti-

tioning strategies, which can be time-consuming and complex to implement.

3.4.3 Data Integration

In today’s data-driven landscape, organizations often deal with heterogeneous data

sources, including structured, semi-structured, and unstructured data from vari-

ous systems and applications. Integrating and harmonizing these disparate data

sources into a unified view poses significant challenges. Data integration involves

handling schema mismatches, data transformation, and maintaining data con-

sistency across different systems. Traditional database systems may struggle to

efficiently handle diverse data types and provide seamless integration capabilities.

3.4.4 Data Security and Privacy

Ensuring data security and privacy is a critical concern in database systems. Unau-

thorized access, data breaches, and insider threats can compromise sensitive infor-

mation and result in severe financial and reputational damage. Current systems

25

rely on access control mechanisms, encryption, and auditing to protect data, but

emerging threats and evolving compliance requirements continue to present chal-

lenges. Moreover, privacy concerns related to personal data and regulatory frame-

works like GDPR require more sophisticated approaches to data anonymization

and consent management.

3.4.5 High Availability and Fault Tolerance

Database systems must provide high availability and fault tolerance to minimize

service disruptions and data loss. Traditional systems may rely on a single point of

failure, such as a central server, which poses a risk to system availability. Achieving

fault tolerance often requires complex replication strategies, distributed architec-

tures, and efficient mechanisms for data synchronization and consistency across

multiple nodes.[16]

3.4.6 Real-time Analytics

With the exponential growth of data, organizations increasingly demand real-time

analytics capabilities to gain timely insights and make informed decisions. Tradi-

tional database systems, optimized for transactional workloads, may struggle to

provide efficient real-time analytics due to the need for complex joins, aggrega-

tions, and ad hoc querying. Balancing the requirements of transactional processing

and analytical querying poses a challenge in traditional systems.

3.4.7 Data Consistency

Maintaining data consistency is a crucial aspect of database systems. In multi-

user environments, concurrent transactions can access and modify the same data

simultaneously, leading to potential data inconsistencies. Ensuring atomicity, con-

sistency, isolation, and durability (ACID properties) is a challenge, especially in

distributed or parallel database systems. Coordinating concurrent transactions

and resolving conflicts to maintain data consistency requires robust concurrency

control mechanisms and careful transaction management.

26

3.4.8 Concurrency Control

Database systems must handle concurrent access to shared data while ensuring

data integrity and avoiding conflicts. Concurrency control mechanisms, such as

locking, timestamp ordering, or optimistic concurrency control, aim to coordinate

concurrent transactions and prevent issues like lost updates, dirty reads, or non-

repeatable reads. However, managing concurrency effectively without sacrificing

performance or introducing excessive locking overhead remains a challenge, partic-

ularly in high-throughput systems with large numbers of concurrent transactions.

3.4.9 Single Point of Failure

Traditional database systems often rely on a single point of failure, such as a

central server or primary node, which poses a risk to system availability and data

integrity. If the central server fails or experiences a disruption, the entire system

may become unavailable, resulting in significant downtime and potential data loss.

Achieving high availability and fault tolerance requires the elimination of single

points of failure through distributed architectures, replication, and redundancy

strategies.

3.4.10 Data Security

Data security is a critical concern for database systems, given the increasing fre-

quency and sophistication of cyber threats. Database systems must protect data

from unauthorized access, data breaches, and insider attacks. Common security

measures include user authentication, access controls, data encryption, and audit-

ing. However, security challenges persist due to evolving threats, inadequate se-

curity practices, and compliance requirements. Protecting against vulnerabilities,

ensuring secure data transmission, and implementing robust security measures are

ongoing challenges in the database field.

27

3.4.11 Privacy Protection

Database systems handle vast amounts of sensitive and personal data, necessi-

tating privacy protection mechanisms. Privacy concerns include data anonymiza-

tion, ensuring compliance with regulations like GDPR, and providing user consent

management. Anonymizing data while maintaining data utility and managing con-

sent in a granular and transparent manner are challenges that require innovative

privacy-enhancing technologies within database systems.

Addressing these challenges requires continuous research and innovation in database

technologies. New approaches, such as distributed and decentralized databases,

distributed consensus algorithms, multi-version concurrency control, advanced en-

cryption techniques, and privacy-preserving mechanisms, are being explored to

overcome these limitations. By addressing data consistency, concurrency control,

eliminating single points of failure, and enhancing security and privacy measures,

the next generation of database systems aims to provide robust, reliable, and

secure data management solutions for a wide range of applications.

3.5 Ways of Data loss

Data loss can occur in various ways, leading to the irreversible disappearance

or corruption of critical information. Understanding the different ways in which

data loss can occur is crucial for implementing effective preventive measures. This

section explores some common ways data can be lost in database systems.

3.5.1 Hardware or System Failures

Hardware failures, such as disk crashes, power outages, or server malfunctions,

can result in data loss. If a database system does not have proper redundancy or

backup mechanisms in place, data stored on the failed hardware or system can be-

come inaccessible or permanently lost. Hardware failures can occur unexpectedly,

making it essential to have reliable backup strategies and disaster recovery plans

to mitigate the impact of such failures.

28

3.5.2 Software or Application Failures

Software or application failures, including bugs, glitches, or crashes, can lead to

data loss. In some cases, software errors or improper handling of transactions

can result in data corruption or incomplete updates, causing inconsistencies in the

database. Software failures can occur due to programming errors, compatibility

issues, or inadequate error handling. Ensuring robust software design, thorough

testing, and error recovery mechanisms are important to minimize the risk of data

loss.

3.5.3 Human Errors

Human errors are a common cause of data loss. Accidental deletion, overwriting

data, or misconfiguration of database settings can lead to significant data loss.

Human errors can occur during routine database administration tasks, data entry

processes, or maintenance operations. Proper training, access controls, and data

validation mechanisms can help reduce the likelihood of human errors causing data

loss.

3.5.4 Malicious Attacks

Malicious attacks, such as hacking, ransomware, or insider threats, pose a sig-

nificant risk to data security and can result in data loss. Attackers may gain

unauthorized access to a database system and intentionally delete or modify data,

rendering it unusable. Ransomware attacks can encrypt data, making it inacces-

sible until a ransom is paid. Insider threats, including disgruntled employees or

unauthorized access by individuals with privileged access, can also lead to data

loss. Implementing robust security measures, such as access controls, encryption,

intrusion detection systems, and regular security audits, can help mitigate the risk

of data loss due to malicious attacks.

29

3.5.5 Natural Disasters

Natural disasters, such as fires, floods, earthquakes, or hurricanes, can physically

damage data centers or infrastructure, leading to data loss. Catastrophic events

can destroy hardware, disrupt power supply, or cause irreparable damage to stor-

age media. Geographic redundancy, off-site backups, and disaster recovery plans

that include data replication to remote locations are essential for mitigating the

impact of natural disasters on data loss.

3.5.6 Data Corruption

Data corruption can occur due to various factors, including software bugs, hard-

ware malfunctions, or transmission errors. Corruption can result in the loss of data

integrity, making it unusable or unreliable. Corrupted data may lead to incorrect

results, system crashes, or the inability to access critical information. Regular

data backups, data validation checks, and integrity checks can help identify and

mitigate data corruption issues.

Understanding the different ways data loss can occur enables organizations to

develop comprehensive strategies for preventing data loss and implementing ro-

bust data protection mechanisms. By addressing hardware and software failures,

mitigating human errors, implementing strong security measures, preparing for

natural disasters, and actively monitoring and detecting data corruption, organi-

zations can minimize the risk of data loss and ensure the availability and integrity

of their critical data.

3.6 Data Loss prevention strategies

Data loss prevention strategies are crucial for mitigating the risk of data loss

and ensuring the availability and integrity of critical information. Here are some

commonly employed strategies in the field:

30

3.6.1 Regular Data Backup

Implementing a regular data backup strategy is essential for preventing data

loss. This involves creating duplicate copies of data and storing them in

separate locations, ensuring that in the event of data loss, the backup copies

can be used for recovery. Backup schedules should be defined based on the

organization’s recovery point objective (RPO), which determines how fre-

quently backups should be performed to minimize data loss. Organizations

may choose to perform full backups periodically or adopt incremental or

differential backup methods to optimize storage space and backup time.

3.6.2 Data Replication

Data replication involves creating and maintaining copies of data across mul-

tiple storage devices or locations. Replication improves data availability and

ensures redundancy, reducing the risk of data loss in the event of hardware

failures or disasters. Replication can be achieved through techniques like

database mirroring, log shipping, or using distributed databases that repli-

cate data across multiple nodes.[17] Replication can be synchronous (imme-

diate replication) or asynchronous (delayed replication) based on the desired

trade-off between data consistency and performance.

3.6.3 Redundant Storage Systems

Redundant storage systems involve deploying multiple storage devices or

servers to store data. Redundancy ensures that if one storage device fails,

data remains accessible from other devices. Redundancy can be achieved

through techniques such as RAID (Redundant Array of Independent Disks),

which distributes data across multiple disks for improved fault tolerance and

performance. Redundant storage systems enhance data availability and can

mitigate the risk of data loss caused by hardware failures.

31

3.6.4 Disaster Recovery Planning

Disaster recovery planning involves developing comprehensive strategies and

procedures to recover data and restore operations in the event of a catas-

trophic event. This includes creating backup sites or data centers in geo-

graphically separate locations, ensuring data replication to remote locations,

and defining recovery time objectives (RTO) to establish the maximum ac-

ceptable downtime. Disaster recovery plans should encompass data backup

and restoration procedures, hardware and software requirements, communi-

cation plans, and regular testing and validation to ensure their effectiveness.

3.6.5 Data Validation and Integrity Checks

Implementing data validation mechanisms, such as checksums or hash func-

tions, helps ensure data integrity and detect potential data corruption or

tampering. Regular integrity checks can identify inconsistencies or errors

in stored data and facilitate early detection and remediation of data issues

before they lead to data loss.

3.6.6 Security Measures

Robust security measures play a vital role in data loss prevention. This

includes implementing access controls, encryption mechanisms, intrusion

detection systems, and security audits to protect data from unauthorized

access, malicious attacks, or insider threats. By safeguarding the confiden-

tiality, integrity, and availability of data, security measures help prevent data

loss due to security breaches.

3.6.7 User Education and Training

Educating and training users on data handling best practices, security pro-

tocols, and the importance of data backup and replication can significantly

32

contribute to data loss prevention. Users should be made aware of potential

risks, encouraged to follow secure data management practices, and trained

on proper backup and recovery procedures.

By implementing a combination of these data loss prevention strategies, organi-

zations can significantly reduce the likelihood and impact of data loss incidents.

Each strategy should be tailored to the specific requirements, risk profile, and

resources of the organization to ensure an effective and comprehensive data loss

prevention approach.

3.7 Database Backup

Database backup is a critical component of data management and plays a vital

role in ensuring the availability, recoverability, and integrity of data.[18] It involves

creating duplicate copies of the database and storing them in separate locations

to protect against data loss and facilitate data recovery in case of system failures,

human errors, or other unforeseen events. This section discusses the importance

of database backup, backup strategies, and considerations for implementing an

effective backup solution.

3.7.1 Importance of Database Backup

Database backup is essential for several reasons:

a. Data Recovery: In the event of data loss due to hardware failures, software

errors, or human mistakes, database backups serve as a reliable source for

restoring lost or corrupted data. Backups allow organizations to recover data

to a known point in time, minimizing downtime and data loss.

b. Business Continuity: Database backups contribute to business continuity by

providing a means to restore critical systems and resume operations swiftly.

By having up-to-date backups, organizations can quickly recover from dis-

ruptive events and maintain continuity in service delivery.

33

c. Compliance and Legal Requirements: Many industries have regulatory or

legal obligations regarding data retention and availability. Database backups

help meet these requirements by ensuring that data is safely stored and

accessible for compliance audits or legal inquiries.

d. Disaster Recovery: Database backups play a crucial role in disaster recovery

scenarios, such as natural disasters or cyber-attacks. Off-site backups enable

the restoration of data in alternative locations, mitigating the impact of

localized incidents and minimizing data loss.

3.7.2 Backup Strategies

Implementing an effective database backup strategy involves considering various

factors, including:

a. Backup Frequency: Organizations need to determine the appropriate backup

frequency based on their Recovery Point Objective (RPO), which defines

acceptable data loss in case of failure. The backup frequency should align

with the RPO to minimize data loss. Common approaches include daily

backups, hourly backups, or near-real-time backups.

b. Full, Incremental, and Differential Backups: Backup strategies often com-

bine different backup types. Full backups capture the entire database, while

incremental backups store only the changes made since the last full or incre-

mental backup. Differential backups capture changes made since the last full

backup. Combining these backup types optimizes storage space and reduces

backup time.

c. Storage Media: Organizations can choose different storage media for database

backups, such as tapes, disks, or cloud storage. Factors to consider include

capacity, access speed, cost, and durability. Cloud storage offers scalability,

accessibility, and redundancy, making it an increasingly popular choice for

backup storage.

34

d. Retention Period: Determining the retention period for backups is crucial. It

should align with organizational requirements, compliance regulations, and

data recovery needs. Retaining backups for an appropriate duration ensures

the availability of historical data and facilitates long-term data analysis or

auditing.

e. Testing and Validation: Regular testing and validation of backups are es-

sential to ensure their reliability and effectiveness. Organizations should

periodically restore backups to test the restoration process and validate the

integrity and usability of the backup data.

3.7.3 Considerations for Database Backup

When implementing a database backup solution, several considerations should be

taken into account:

a. Backup Storage Security: Backup data should be protected with appropri-

ate security measures, including access controls, encryption, and regular vul-

nerability assessments. Safeguarding backup storage prevents unauthorized

access or tampering with critical data.

b. Automation and Monitoring: Implementing automated backup processes

reduces the risk of human errors and ensures consistent backup execution.

Monitoring backup operations provides insights into backup success rates,

alerts for failures, and enables timely remediation.

c. Off-Site and Remote Backups: Storing backups in off-site or remote locations

enhances data protection by mitigating the impact of localized disasters or

physical damage to the primary site. Off-site backups should be stored.

3.7.4 Limitations

While database backup is a crucial aspect of data management and disaster recov-

ery, it is important to recognize its limitations. Understanding these limitations

35

helps organizations develop a comprehensive data protection strategy that ad-

dresses potential gaps. Here are some limitations of database backup:

1. Data Loss Window: Even with frequent backup schedules, there is always a

time window between backups where data changes may not be captured. If a

failure or data loss occurs during this window, the most recent changes may

not be recoverable. Organizations need to carefully consider their Recovery

Point Objective (RPO) and backup frequency to minimize the potential data

loss within this window.

2. Backup and Recovery Time: Database backups and recoveries can be time-

consuming processes, particularly for large databases. The time required to

create backups and restore data to the primary system can lead to downtime

and impact business operations. Organizations need to balance the backup

and recovery time with their Recovery Time Objective (RTO) to minimize

the impact on business continuity.

3. Storage Requirements: Database backups consume storage space, especially

when considering multiple backup copies, retention periods, and incremen-

tal backups. Storing backups for extended periods or maintaining multiple

copies can result in significant storage costs. Organizations need to assess

their storage capacity and consider cost-effective solutions such as data dedu-

plication, compression, or cloud-based storage.

4. Backup Consistency and Integrity: Ensuring the consistency and integrity of

backup data is crucial. Backup processes need to capture the database state

accurately and completely to guarantee successful recovery. Inconsistent or

corrupted backups can render the recovery process ineffective, resulting in

data loss or incomplete restoration.

5. Single Point of Failure: In traditional backup approaches, relying on a single

backup server or location creates a single point of failure. If the backup

server or storage experiences a failure or is compromised, it can lead to the

36

loss of both the primary data and the backup data. Organizations should

consider implementing redundant backup solutions or off-site backups to

mitigate the risk of a single point of failure.

6. Manual Errors and Misconfigurations: Human errors, such as misconfigura-

tions or accidental deletions, can affect the effectiveness of database backups.

Improper backup settings, incorrect storage locations, or accidental overwrit-

ing of backups can compromise the backup process. Organizations should

implement proper training, standard operating procedures, and regular re-

views to minimize the likelihood of human errors in backup procedures.

7. Compatibility and Versioning: Compatibility issues can arise when restoring

backups to different database versions or platforms. If the backup is not

compatible with the restored environment, it may require additional steps or

data transformations for successful recovery. Organizations should consider

versioning and compatibility concerns when planning backup and recovery

processes.

8. Backup Testing and Validation: While backups are created with the inten-

tion of data recovery, their reliability and effectiveness can only be confirmed

through regular testing and validation. Failure to test backups periodically

may result in backups that cannot be successfully restored, rendering the

entire backup strategy ineffective.

Understanding these limitations allows organizations to proactively address poten-

tial challenges and incorporate additional data protection measures. Implementing

complementary strategies such as data replication, real-time synchronization, high

availability configurations, or continuous data protection can help overcome these

limitations and provide a more robust and comprehensive data protection solution.

3.8 Database Replication

Database replication is a fundamental technique in decentralized database manage-

ment systems that involves creating and maintaining multiple copies of a database

37

across different nodes or locations. It plays a crucial role in improving data avail-

ability, scalability, and fault tolerance.[19] This section provides an overview of

database replication, its benefits, approaches, and considerations for implement-

ing an effective replication strategy.

3.8.1 Overview of Database Replication

Database replication is the process of creating and synchronizing multiple copies

of a database to ensure data redundancy and availability. Each copy, also known

as a replica, contains the same data and is stored on separate nodes or servers

within a distributed database system. Replication enables concurrent access to

data, enhances fault tolerance, and improves overall system performance.

3.8.2 Benefits of Database Replication

Database replication offers several benefits for decentralized database management

systems:

1. Improved Data Availability: Replication increases data availability by al-

lowing multiple replicas to serve read requests. If one replica becomes un-

available due to a node failure or network issue, the remaining replicas can

continue serving data, ensuring uninterrupted access for users.

2. Scalability and Load Balancing: Replication facilitates horizontal scalability

by distributing read operations across multiple replicas. This distributes the

query load and improves system performance, enabling the system to handle

increased user demand without sacrificing responsiveness.

3. Fault Tolerance and High Availability: Replication provides fault tolerance

by ensuring that data remains accessible even if individual nodes or replicas

fail. If a replica becomes unavailable, other replicas can continue serving

data, reducing the impact of failures and minimizing downtime.

4. Geographical Redundancy: By replicating data across geographically dis-

persed locations, database replication provides redundancy and disaster re-

38

covery capabilities. In the event of a natural disaster, network outage, or

localized failure, data can be accessed from replicas in alternative locations.

5. Data Locality and Performance Optimization: Replication allows data to

be stored closer to users or applications, reducing latency and improving

response times. By placing replicas strategically, organizations can optimize

data access based on geographical proximity or specific user requirements.

3.8.3 Approaches to Database Replication

Different approaches can be used for database replication, depending on the re-

quirements and characteristics of the system. Some common replication ap-

proaches include:

1. Snapshot Replication: Snapshot replication involves taking periodic snap-

shots of the entire database and distributing them to replicas. This approach

provides a consistent view of the data at a specific point in time but requires

significant data transfer and storage resources.

2. Transactional Replication: Transactional replication replicates individual

database transactions from the source to the replicas in real-time or near-

real-time. This approach ensures that replicas stay synchronized with the

source database, maintaining data consistency across all replicas.

3. Merge Replication: Merge replication allows bidirectional synchronization

of data across replicas. It accommodates scenarios where data modifications

can occur on multiple replicas and resolves conflicts during synchronization.

4. Peer-to-Peer Replication: Peer-to-peer replication enables each node in a

decentralized database system to act as both a source and a replica. It

allows data modifications at any replica, and changes are propagated to

other replicas in a distributed and decentralized manner.

39

3.8.4 Considerations for Database Replication

Implementing a successful database replication strategy requires careful consider-

ation of the following aspects:

1. Consistency and Conflict Resolution: Ensuring data consistency across repli-

cas is crucial. Techniques such as conflict detection and resolution mecha-

nisms, timestamp-based ordering, or consensus algorithms help maintain

data integrity and resolve conflicts that may arise due to concurrent up-

dates.

2. Replication Topology: Choosing an appropriate replication topology de-

pends on the system requirements, performance considerations, and fault

tolerance objectives. Common topologies include master-slave replication,

master-master replication, or multi-master replication.

3. Replication Lag: Replication introduces a delay between the source database

and replicas, known as replication lag. Organizations need to monitor and

manage replication lag to ensure that replicas remain up to date and provide

timely data access.

4. Network Bandwidth and Latency: Database replication involves transferring

data between nodes, which requires sufficient network bandwidth and low

latency. Organizations should assess network capacity and latency require-

ments to avoid performance bottlenecks and data synchronization delays.

5. Replication Monitoring and Maintenance: Regular monitoring of replication

status, performance, and consistency is essential to identify and resolve any

issues promptly. Organizations should have monitoring tools and processes

in place to ensure the health and effectiveness of the replication system.

Database replication is a powerful technique that enhances data availability, scal-

ability, and fault tolerance in decentralized database management systems. By

40

implementing an appropriate replication strategy and considering the specific re-

quirements of the system, organizations can improve data accessibility, system

performance, and overall data management capabilities.

3.8.5 Limitations

While database replication offers numerous benefits, it also has certain limitations

that organizations should consider when implementing a replication strategy. Un-

derstanding these limitations helps ensure that replication meets the desired ob-

jectives and aligns with the system’s requirements. Here are some limitations of

database replication:

1. Replication Complexity: Implementing and managing database replication

can be complex, especially in large-scale distributed environments. Con-

figuring replication topologies, handling conflicts, managing replication lag,

and ensuring data consistency require expertise and careful planning. Or-

ganizations need skilled administrators and appropriate tools to effectively

deploy and maintain replication systems.

2. Replication Lag: Replication introduces a delay between the source database

and replicas, known as replication lag. This lag can vary based on factors

such as network bandwidth, latency, and the volume of data being replicated.

In situations where real-time data access is critical, replication lag can be a

limitation, as the replicas might not reflect the most up-to-date data.

3. Consistency and Conflict Resolution: Maintaining data consistency across

replicas can be challenging, especially when updates occur simultaneously

on different replicas. Conflict resolution mechanisms are required to handle

conflicts that arise when conflicting changes are made on different repli-

cas. Implementing effective conflict resolution strategies can be complex

and require careful consideration of the application’s requirements and data

semantics.

41

4. Scalability and Performance Impact: Database replication can introduce per-

formance overhead, particularly during write operations. Replicating write

transactions across multiple replicas requires additional resources and can

impact the system’s overall performance. Organizations need to carefully

design and optimize their replication infrastructure to ensure scalability and

minimize the performance impact on the source database and replicas.

5. Storage and Network Requirements: Replicating a database across multiple

nodes increases storage and network bandwidth requirements. Each replica

requires storage space to store a copy of the database, which can be a signifi-

cant consideration for large databases with high data volumes. Additionally,

efficient network connectivity is essential to ensure timely data synchroniza-

tion between replicas, particularly in geographically dispersed environments.

6. Single Point of Failure: Database replication introduces the risk of a sin-

gle point of failure. If the source database or a critical replica becomes

unavailable, it can impact the availability and integrity of the entire repli-

cation system. Organizations need to implement redundancy and failover

mechanisms to mitigate this risk and ensure high availability of replicated

data.

7. Replication Monitoring and Administration: Replication systems require

ongoing monitoring and administration to ensure their health and effective-

ness. Monitoring replication status, detecting and resolving issues, managing

replica synchronization, and performing regular maintenance tasks require

dedicated resources and continuous attention.

8. Data Security and Compliance: Replication introduces additional consider-

ations for data security and compliance. Organizations must ensure that

replicated data remains protected and meets regulatory requirements. Im-

plementing proper security measures, including access controls, encryption,

and data privacy safeguards, becomes crucial to maintain data integrity and

confidentiality.

42

9. Operational Complexity: Managing a replication environment with multiple

replicas adds complexity to system operations and maintenance. Tasks such

as adding new replicas, handling replica failures, or upgrading the replication

infrastructure require careful planning and coordination.

Despite these limitations, database replication remains a valuable technique for

achieving data availability, scalability, and fault tolerance in decentralized database

management systems. By carefully considering these limitations and addressing

them through appropriate design, configuration, and ongoing management, orga-

nizations can leverage the benefits of replication while mitigating potential chal-

lenges.

3.9 Strategies to implement

Direct mail, anti-entropy, and rumor mongering [20] are concepts and techniques

related to data dissemination and synchronization in decentralized systems. These

approaches play a significant role in maintaining data consistency, managing data

updates, and ensuring information dissemination across multiple nodes or repli-

cas. These techniques provide mechanisms for efficient data dissemination, syn-

chronization, and maintaining data consistency in decentralized systems. Each

technique offers unique advantages and considerations depending on the specific

requirements and characteristics of the system. By leveraging these approaches

appropriately, decentralized systems can ensure timely and consistent dissemina-

tion of updates, handle network disruptions or delays, and maintain data integrity

across multiple nodes or replicas.

3.9.1 Direct Mail

Direct mail is a data dissemination technique commonly used in decentralized sys-

tems. In this approach, data updates or messages are directly sent from the source

node to the target nodes that need to receive the information. The source node

identifies the intended recipients and delivers the updates directly to them, bypass-

ing intermediate nodes. This technique is efficient for targeted data dissemination,

43

as it minimizes unnecessary communication and reduces the dissemination delay.

Direct mail is often used in scenarios where selective dissemination is required,

such as sending updates to specific nodes or replicas.

3.9.2 Limitations

1. Scalability: Direct Mail can face challenges in highly scalable systems with

a large number of nodes or replicas. As the number of recipients increases,

the overhead of identifying and delivering updates to each recipient grows,

potentially impacting performance and scalability.

2. Routing Efficiency: Efficient routing becomes crucial in Direct Mail to ensure

updates reach their intended recipients. The design and implementation of

efficient routing algorithms can be complex, especially when dealing with

dynamic and changing network topologies.

3. Failure Handling: Direct Mail can be susceptible to node failures or network

partitions. If a source node fails before delivering updates, or if a recipient

node fails to receive updates, ensuring reliable delivery becomes challenging.

3.9.3 Complexities

1. Message Ordering: Maintaining the order of messages in Direct Mail can

be challenging, especially when updates from different sources or on differ-

ent paths arrive at recipients simultaneously. Implementing mechanisms to

preserve the order of updates can introduce additional complexity.

2. Message Duplication and Overlapping: Direct Mail may result in message

duplication or overlapping when multiple sources send updates to the same

recipient or when multiple paths deliver updates concurrently. Handling and

resolving such situations require careful consideration to avoid inconsisten-

cies or unnecessary processing overhead.

44

3.9.4 Anti-Entropy

Anti-entropy is a technique used in distributed systems to ensure data consistency

and synchronize updates across replicas. It addresses the problem of maintaining

consistent replicas in the face of network partitions, failures, or delays. Anti-

entropy involves periodically comparing and exchanging data between replicas to

identify and reconcile any differences or inconsistencies. The replicas exchange

information about the data they store, and if any disparities are detected, the

missing or outdated data is transmitted to bring the replicas back into sync. This

technique helps mitigate the effects of network delays or failures and ensures that

replicas remain consistent over time.

3.9.5 Limitations

1. Communication Overhead: Anti-Entropy involves exchanging data between

replicas to identify and reconcile differences. This process incurs communi-

cation overhead, particularly when dealing with large datasets or frequent

updates. The amount of data transferred during synchronization can impact

network bandwidth and performance.

2. Convergence Time: The time required for replicas to converge to a consistent

state can vary depending on the frequency of updates, network conditions,

and the number of replicas. Achieving global consistency may take time, and

during this convergence period, replicas might temporarily have inconsistent

views of the data.

3. Resource Consumption: The process of comparing and exchanging data in

Anti-Entropy requires computational resources and storage space. For sys-

tems with limited resources, managing the overhead of Anti-Entropy can be

challenging.

45

3.9.6 Complexities

1. Conflict Resolution: Resolving conflicts that arise when replicas have diver-

gent updates can be complex. Determining the correct resolution strategy

and ensuring consistency across replicas may require careful consideration

of application-specific requirements and conflict resolution mechanisms.

2. Synchronization Frequency: Deciding on the frequency of Anti-Entropy syn-

chronization is non-trivial. Synchronizing too frequently can result in in-

creased communication overhead, while infrequent synchronization may lead

to larger data disparities and longer convergence times.

3.9.7 Rumor Mongering

Rumor-mongering, also known as gossip-based communication, is a decentralized

communication technique inspired by the spread of rumours in social networks.

In this approach, nodes or replicas communicate with each other by randomly

selecting and exchanging information. When a node receives new data or an

update, it disseminates that information to a subset of its neighbouring nodes.

The receiving nodes, in turn, continue the process by spreading the information to

their neighbours.[21] This iterative process continues until the information reaches

all or a majority of the nodes in the system. Rumor-mongering is resilient to

network partitions, as it does not rely on strict paths of communication. It allows

information to propagate in a decentralized and self-organizing manner, ensuring

that updates reach all nodes eventually.

3.9.8 Limitations

Reliability and Completeness: Rumor mongering relies on the random selection

of neighbours for information dissemination. While it provides probabilistic guar-

antees of message propagation, there is a small chance that some nodes may not

receive certain updates. Achieving complete and reliable dissemination across all

nodes is not guaranteed.

46

Convergence Time: The time taken for information to propagate to all nodes in a

decentralized system using rumor-mongering can vary significantly. Factors such

as network topology, node connectivity, and the rate of gossip exchanges influence

the convergence time. It can take longer for updates to reach all nodes compared

to other techniques.

Overhead and Redundancy: Rumor mongering involves frequent message ex-

changes between nodes, which can generate redundant network traffic.

3.9.9 Complexities

Network Partition Handling: When network partitions occur, rumor-mongering

can lead to the dissemination of divergent updates across different partitions.

Handling network partitions and resolving inconsistencies require additional mech-

anisms and protocols to ensure data consistency.

Gossip Protocol Design: Designing efficient and robust gossip protocols can be

complex. Determining the parameters, such as gossiping rate, message forwarding

strategy, and neighbour selection policies, requires careful consideration of the

system’s characteristics and goals.

47

4 Proposed Structure

Our proposed solution aims to address the challenges of data loss prevention and

ensure data consistency in a decentralized database management system. We

present a peer-to-peer gossip-based solution where each node in the database clus-

ter acts as a witness for transactions and collaborates to reach a consensus on

the current state of the database. To achieve this, we leverage the Raft consen-

sus algorithm and the replicated log method. There are previous references of

using consensus algorithm to prevent data loss which doesn’t have the notion of

database management [7] [22]

4.0.1 Replicated LogChain Method

In our solution, we proposed to the log to LogChain and replicating it maintains

the integrity of the data which was done in the following way. A log has reference

to the hash of the previous log which in turn has the hash of its previous log creat-

ing a LogChain and replicating this LogChain across the network for integrity [23].

Figure 3: Editing the log to LogChain and replicating it maintains the integrity

of the data which was done in the following way

4.0.2 Client Authenticity

Each client needs to have a registered public-private key pair with the cluster to

interact. Every request sent from the client needs to be signed by the client which

will be verified by the cluster before committing any transaction on its LogChain.

48

4.0.3 Reaching Consensus with Raft Algorithm Instead of Acknowl-

edgement of Database Commit

To ensure consistency and agreement on the state of the database, we employ

the Raft consensus algorithm. Raft provides a fault-tolerant and leader-based

approach to consensus. Nodes participate in leader elections, log replication, and

commit decisions to maintain a consistent and up-to-date state across the database

cluster. The leader node coordinates the replication of the transaction logs and

ensures that all nodes eventually reach a consensus on the committed transactions

[24].

Figure 4: Replicated state machine architecture

4.1 Benefits of our solution

By combining the peer-to-peer gossip-based approach, Raft consensus algorithm,

and replicated log method, our solution provides the following benefits:

• Data Consistency: The witness nodes and the consensus mechanism ensure

that all nodes eventually agree on the state of the database, maintaining

data consistency across the decentralized system.

• Fault Tolerance: The use of the Raft algorithm and replication of transaction

logs provide fault tolerance capabilities. In the event of node failures or net-

work disruptions, the system can continue to operate and reach a consensus

by electing a new leader and replicating logs to the surviving nodes.

49

• Scalability: The gossip-based communication model and decentralized ar-

chitecture allow for scalable growth of the database cluster. As the number

of nodes increases, the system can handle a higher transaction load and view

requests.

• Data Loss Prevention: By leveraging replication and consensus mechanisms,

our solution reduces the risk of data loss. Each transaction is captured in the

replicated logs, ensuring that even in the event of node failures or network

issues, the data can be recovered and the system can maintain data integrity.

50

4.2 Proposed Architecture

Figure 5: Higher Level Architecture of the Ecosystem

51

There are 4 types of machines included in this whole ecosystem

1. Client: Sends Transaction request or view request to the cluster

2. Verifier/Node: Constructs the cluster

3. Maintainers: Changes any configuration to the cluster e.g. adding a node or

removing any node.

4. Entrypoint RPC: This is the entry point for any requests sent to the server

In addition, there are 3 types of request pools

1. Update: All the transactional queries are stored here

2. View: All the view queries are stored here

3. Configuration: All the maintainer’s requests are stored here

Now we will discuss the execution flow of all the machines

4.3 Client/Maintainer

1. Client signs the request and sends it to the entry point RPC

2. RPC forwards the request to the cluster and the cluster verifies the signature

3. Client Receives a Response

4.4 Entrypoint RPC

1. Forwards the request to the cluster

2. Return the response to the client

52

Figure 6: Node Architecture

4.5 Verifier/Node(Cluster)

1. Receives Update or View Request on the Request Pools

2. Coordination Layer uses the Domain Logic Layer to verify the signature

3. Gets the Last Log Hash

4. Appends the log hash with the current Log and calculates the new Log Hash

5. Reaches Consensus and Entries the updated Log into the LogChain

4.6 Execution Scenarios

1. Node Failure: In the case of one node failure the voting is initiated and a

new leader is chosen

53

2. Node Append: Maintainer appends the node and the log is compressed and

replicated so as the state machine

3. Malicious Activity: Client signatures are impossible to forge and changing

anything in the hash chain requires extensive computation which is not fea-

sible [23].

54

5 Simulation

5.1 Implementation Architecture

Communication Protocol: OQM Message Queue [25]

Consensus Algorithm: Raft Consensus Algorithm [26]

Database Construction: Replicated LogChain Method

Authentication: Private-Public Key Cryptography

Development Language: Node.Js

5.2 simulation results

We ran the simulation using node-zmq-raft instantiating 5 virtual state machines

in the same computer with the configuration:

Processor: Ryzen 7 5700g

RAM: 16GB

We ran the simulation for 1000 transactions and the mean-time is given below:

Figure 7: Heartbeat of five virtual state machines

µ1 = Execution Time of 1000 transactions (without database operation) = 398.705

ms

µ2 = Execution Time of 1000 transactions(with database operation) = 6.585 s

55

6 Result Analysis

The formula for calculating the execution time is:

T = Tc × (λ× n× (nt) + (λd)× (nt))where,

T = Total Time

Tc = Optimistic Consensus Time

λ = Network Propagation Delay

λd = Database Operational Delay

nt = Number of Transactions

n = Number of nodes

Now, for the first case λd = 0, λ = 1 and nt = 1000, we can get the Tc value and

divide it by 5 (as all virtual machines are run in the same machine). We get the

Tc = 0.02 ms.

Using this, we get the λd = 60 ms (in practice which is very low. Due to our im-

plementation limitations this number is a lot high for one transaction committed

onto the database).

Let us consider T = 1000 ms (1 second). Using the above values we can get the

number of transactions in 1 second. We calculated that

if λ = 1 ms (Same Physical Network) - Transaction Speed = 770 tps

if λ = 20 ms - Transaction Speed = 312 tps

As the number of machines involved in executing a query increases, the time

required for query execution also tends to increase. This is primarily due to

two factors: propagation delay and consensus time associated with each machine.

Propagation delay refers to the time it takes for information to travel between

different machines in the system, influenced by factors such as network latency

and the physical distance between machines. As the number of machines increases,

56

the overall communication overhead rises, resulting in longer propagation delays

and subsequently prolonging the query execution time.

Another significant factor impacting execution time is the consensus time required

to reach an agreement among the replicated databases. Consensus protocols, such

as the popular Raft or Paxos algorithms, are often employed to ensure consis-

tency across replicas. However, as the number of participating machines grows,

the process of reaching consensus becomes more time-consuming. Each machine

needs to communicate, exchange information, and arrive at a consensus, which

can introduce additional delays in the query processing phase.

Despite the potential benefits of having a larger number of replicated databases,

practical considerations, especially in terms of cost, make it inefficient to have more

than a certain threshold, typically around 10, in most scenarios. The expenses as-

sociated with maintaining and managing a large number of replicas, including

hardware costs, maintenance efforts, and operational overhead, can become pro-

hibitive. Therefore, in real-world scenarios, it is often impractical to go beyond a

certain number of replicated databases due to cost constraints.

It is important to note that the simulation mentioned in the context was conducted

in a sandbox environment, which provides a controlled and isolated setting for

testing purposes. While the results obtained from the simulation can offer valu-

able insights, it is crucial to acknowledge that real-world production environments

introduce additional complexities and variables that can affect the outcome. Fac-

tors such as varying network conditions, hardware limitations, and system load can

significantly impact system performance and consequently influence the results in

a production setting. Thus, conducting further experiments and evaluations in

an actual production environment would be necessary to obtain a more accurate

understanding of the system’s behavior and performance in practical scenarios.

57

7 Future Works

The process of updating the state machine in each machine is notably inefficient,

primarily because the state machines employed are in the form of databases and

involve significant transaction time delays. To address this inefficiency, we can

draw inspiration from the concept of Chain replication, as described in the work

by Fritchie et al. [27]. By leveraging the insights and techniques presented in that

study, we can explore alternative approaches to updating the state of the database

that are more efficient and cost-effective compared to traditional transactions.

It is worth noting that the transactional nature of updating the state machines in-

troduces a substantial overhead, both in terms of time and resources. Transactions

often involve multiple steps, such as acquiring locks, validating data integrity, and

committing changes, which can be computationally expensive. By rethinking the

update process and finding ways to minimize or eliminate the need for expensive

transactions, we can significantly improve the efficiency of state updates in each

machine.

Furthermore, it is crucial to address issues related to inefficient data caching in

the databases, as highlighted in the study by Papaioannou et al. [28]. Inefficient

data caching can negatively impact the read speed of the databases, leading to

delays in accessing and retrieving data. By focusing on optimizing data caching

strategies and addressing the identified inefficiencies, we can enhance the overall

read performance of the databases and mitigate the issues associated with data

access.

To summarize, to improve the efficiency of state-machine updates in each ma-

chine, we can explore alternative methods inspired by Chain replication. Addi-

tionally, addressing inefficiencies in data caching can help improve the read speed

of databases. By leveraging these approaches, we can work towards a more efficient

and optimized system for updating and accessing the state of the database.

58

8 Conclusion

The utilization of the Raft Consensus Algorithm introduces a highly innovative

and pioneering approach in the development of decentralized systems. This algo-

rithm serves as a fundamental methodology for constructing a network of nodes

that operate in a distributed and coordinated manner. The result is a system

that not only showcases impressive qualities such as resilience, scalability, and

consistency, but also ensures these attributes extend throughout the entire cluster

network.

One of the primary challenges faced in designing decentralized systems is the

achievement of consistent performance. Previous methods, such as the primary-

backup techniques or chain replication approach, have showcased limitations in

this regard. Specifically, these conventional methods often sacrifice the inherent

transaction speed of the native database, thereby impeding the system’s overall

performance.

In contrast, the Raft Consensus Algorithm provides a solution to this problem. By

leveraging a leader-based approach and employing a replicated log as the primary

data structure, the algorithm ensures that the system maintains a high level of

consistency while preserving the transaction speed of the underlying database.

This unique characteristic sets it apart from traditional methods and establishes

it as a superior choice for constructing decentralized database systems.

In summary, the Raft Consensus Algorithm revolutionizes the construction of de-

centralized database systems by offering a robust and efficient solution. Its ability

to maintain resilience, scalability, and consistency throughout the cluster network,

coupled with its capacity to preserve transaction speed, makes it a truly excep-

tional approach for building decentralized systems in a wide range of applications.

59

References

[1] S. Liu and R. Kuhn, “Data loss prevention,” IT professional, vol. 12, no. 2,

pp. 10–13, 2010.

[2] L. Cheng, F. Liu, and D. Yao, “Enterprise data breach: Causes, challenges,

prevention, and future directions,” Wiley Interdisciplinary Reviews: Data

Mining and Knowledge Discovery, vol. 7, no. 5, e1211, 2017.

[3] R. Van Renesse and F. B. Schneider, “Chain replication for supporting high

throughput and availability.,” in OSDI, vol. 4, 2004.

[4] B. Calder, J. Wang, A. Ogus, et al., “Windows azure storage: A highly

available cloud storage service with strong consistency,” in Proceedings of

the Twenty-Third ACM Symposium on Operating Systems Principles, 2011,

pp. 143–157.

[5] A. Adya, W. J. Bolosky, M. Castro, et al., “Farsite: Federated, available, and

reliable storage for an incompletely trusted environment,” ACM SIGOPS

Operating Systems Review, vol. 36, no. SI, pp. 1–14, 2002.

[6] F. B. Schneider, “Implementing fault-tolerant services using the state ma-

chine approach: A tutorial,” ACM Computing Surveys (CSUR), vol. 22,

no. 4, pp. 299–319, 1990.

[7] V. Iancu and I. Ignat, “A peer-to-peer consensus algorithm to enable storage

reliability for a decentralized distributed database,” in 2010 IEEE Interna-

tional Conference on Automation, Quality and Testing, Robotics (AQTR),

vol. 2, 2010, pp. 1–6. doi: 10.1109/AQTR.2010.5520830.

[8] M. K. Lai and K. Schildkamp, “Data-based decision making: An overview,”

Data-based decision making in education: Challenges and opportunities, pp. 9–

21, 2013.

[9] R. S. Sandhu, “On five definitions of data integrity.,” in DBSec, Citeseer,

1993, pp. 257–267.

60

https://doi.org/10.1109/AQTR.2010.5520830

[10] G. Sivathanu, C. P. Wright, and E. Zadok, “Ensuring data integrity in stor-

age: Techniques and applications,” in Proceedings of the 2005 ACM workshop

on Storage security and survivability, 2005, pp. 26–36.

[11] G. J. Matthews and O. Harel, “Data confidentiality: A review of methods

for statistical disclosure limitation and methods for assessing privacy,” 2011.

[12] B. Liu, X. L. Yu, S. Chen, X. Xu, and L. Zhu, “Blockchain based data

integrity service framework for iot data,” in 2017 IEEE International Con-

ference on Web Services (ICWS), IEEE, 2017, pp. 468–475.

[13] S. M. Diesburg and A.-I. A. Wang, “A survey of confidential data storage

and deletion methods,” ACM Computing Surveys (CSUR), vol. 43, no. 1,

pp. 1–37, 2010.

[14] Z. Zhao, H. Zhao, Q. Zhuang, et al., “Efficiently supporting multi-level serial-

izability in decentralized database systems,” IEEE Transactions on Knowl-

edge and Data Engineering, 2023.

[15] D. Serrano, M. Patiño-Martınez, R. Jiménez-Peris, and B. Kemme, “Boost-

ing database replication scalability through partial replication and 1-copy-

snapshot-isolation,” in 13th Pacific Rim International Symposium on De-

pendable Computing (PRDC 2007), IEEE, 2007, pp. 290–297.

[16] F. Cristian, “Understanding fault-tolerant distributed systems,” Communi-

cations of the ACM, vol. 34, no. 2, pp. 56–78, 1991.

[17] H. Lamehamedi, B. Szymanski, Z. Shentu, and E. Deelman, “Data repli-

cation strategies in grid environments,” in Fifth International Conference

on Algorithms and Architectures for Parallel Processing, 2002. Proceedings.,

IEEE, 2002, pp. 378–383.

[18] S. Suguna and A. Suhasini, “Overview of data backup and disaster recovery

in cloud,” in International Conference on Information Communication and

Embedded Systems (ICICES2014), IEEE, 2014, pp. 1–7.

61

[19] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso, “Database

replication techniques: A three parameter classification,” in Proceedings 19th

IEEE Symposium on Reliable Distributed Systems SRDS-2000, IEEE, 2000,

pp. 206–215.

[20] J. Holliday, R. Steinke, D. Agrawal, and A. El Abbadi, “Epidemic algorithms

for replicated databases,” IEEE Transactions on Knowledge and Data En-

gineering, vol. 15, no. 5, pp. 1218–1238, 2003.

[21] S. Deb, M. Médard, and C. Choute, “Algebraic gossip: A network coding

approach to optimal multiple rumor mongering,” IEEE Transactions on In-

formation Theory, vol. 52, no. 6, pp. 2486–2507, 2006.

[22] R. Jiménez-Peris, M. Patiño-Martınez, G. Alonso, and B. Kemme, “Are quo-

rums an alternative for data replication?” ACM Transactions on Database

Systems (TODS), vol. 28, no. 3, pp. 257–294, 2003.

[23] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decentralized

business review, p. 21 260, 2008.

[24] D. Ongaro and J. Ousterhout, “In search of an understandable consensus al-

gorithm,” in 2014 {USENIX} Annual Technical Conference ({USENIX}{ATC}

14), 2014, pp. 305–319.

[25] M. Sústrik et al., “Zeromq,” Introduction Amy Brown and Greg Wilson,

2015.

[26] L. H. royaltm dependabot[bot] dependabot[bot], An opinionated raft imple-

mentation powered by ømq, https://github.com/royaltm/node-zmq-

raft, 2017.

[27] S. L. Fritchie, “Chain replication in theory and in practice,” in Proceedings

of the 9th ACM SIGPLAN workshop on Erlang, 2010, pp. 33–44.

[28] A. Papaioannou and K. Magoutis, “Addressing the read-performance impact

of reconfigurations in replicated key-value stores,” IEEE Transactions on

Parallel and Distributed Systems, vol. 33, no. 9, pp. 2106–2119, 2021.

62

https://github.com/royaltm/node-zmq-raft
https://github.com/royaltm/node-zmq-raft

	Introduction
	Overview
	Problem Statement
	Motivation
	Thesis Objective
	Thesis Contributions
	Organization of the Thesis

	Literature Review
	Chain Replication for Supporting High Throughput and Availability van2004chain
	Limitations

	A peer-to-peer consensus algorithm to enable storage reliability for a decentralized distributed database 5520830
	Summary

	Background
	Data
	Data Loss
	Data Storage Methods
	Relational databases
	NoSQL Databases
	Object-Oriented Databases
	In-Memory Databases
	Columnar Databases
	Cloud-based Databases
	NewSQL Databases
	Decentralized Database Systems

	Main Problems of current database systems
	Scalability
	Performance Bottlenecks
	Data Integration
	Data Security and Privacy
	High Availability and Fault Tolerance
	Real-time Analytics
	Data Consistency
	Concurrency Control
	Single Point of Failure
	Data Security
	Privacy Protection

	Ways of Data loss
	Hardware or System Failures
	Software or Application Failures
	Human Errors
	Malicious Attacks
	Natural Disasters
	Data Corruption

	Data Loss prevention strategies
	Regular Data Backup
	Data Replication
	Redundant Storage Systems
	Disaster Recovery Planning
	Data Validation and Integrity Checks
	Security Measures
	User Education and Training

	Database Backup
	Importance of Database Backup
	Backup Strategies
	Considerations for Database Backup
	Limitations

	Database Replication
	Overview of Database Replication
	Benefits of Database Replication
	Approaches to Database Replication
	Considerations for Database Replication
	Limitations

	Strategies to implement
	Direct Mail
	Limitations
	Complexities
	Anti-Entropy
	Limitations
	Complexities
	Rumor Mongering
	Limitations
	Complexities

	Proposed Structure
	Replicated LogChain Method
	Client Authenticity
	Reaching Consensus with Raft Algorithm Instead of Acknowledgement of Database Commit

	Benefits of our solution
	Proposed Architecture
	Client/Maintainer
	Entrypoint RPC
	Verifier/Node(Cluster)
	Execution Scenarios

	Simulation
	Implementation Architecture
	simulation results

	Result Analysis
	Future Works
	Conclusion

