
An Empirical Study of the Impact of Developer Proficiency
on Bug fixing Efficiency and Accuracy

by

Khairatun Hissan(180042103)
Adiba Hasan(180042111)

Fatema-tuz-Zohora Sananda(180042124)

Supervised By:
Shohel Ahmed

Assistant Professor
Dept. of Computer Science and Engineering,

Islamic University of Technology

A thesis submitted to the Department of CSE in partial fulfillment of the
requirements for the degree of Bachelor of Science in Software Engineering

Department of Computer Science and Engineering
Islamic University of Technology (IUT)
Board Bazar, Gazipur-1704, Bangladesh.

May, 2023.

© 2023 Khairatun Hissan
Adiba Hasan

Fatema-tuz-Zohora Sananda
All Rights Reserved.

i

Declaration of Authorship

This is to certify that the work presented in this thesis, titled “An Empirical Study
of the Impact of Developer Proficiency on Bug Fixing Efficiency and Accuracy”,
is the outcome of research carried out by Khairatun Hissan, Adiba Hasan, Fatema-
tuz-Zohora Sananda under the supervision of Shohel Ahmed. It is also declared that
neither this thesis nor any part of it has been submitted anywhere else for the award of
any degree, diploma, or other qualifications. Information derived from the published or
unpublished work of others has been acknowledged in the text and a list of references
is given.

Authors:

Khairatun Hissan Adiba Hasan

Student No.: 180042103, Student No.: 180042111,

Date: May 27, 2023. Date: May 27, 2023.

Fatema-tuz-Zohora Sananda

Student No.: 180042124,

Date: May 27, 2023.

ii

An Empirical Study of the Impact of Developer Proficiency on Bug Fixing
Efficiency and Accuracy

Approved By:

Supervisor

Shohel Ahmed

Assistant Professor,

Department of Computer Science and Engineering,

Islamic University of Technology (IUT)

Date: May 27, 2023.

iii

Acknowledgment

We would like to begin by expressing our sincere gratitude to Almighty Allah for his
blessings, which enabled us to successfully complete this thesis research. It wouldn’t
be possible to be in our current situation without Allah’s mercy.

We would like to thank Shohel Ahmed for his support, advice, and inspiration. The
thesis would not be on the right track without his guidance and assistance. From the
introduction of the thesis topics to implementation, his wise judgment, time, and in-
put were all contributed throughout the thesis study, which enabled us to complete our
thesis work correctly.

We want to express our gratitude to the jury members of my thesis committee
for their insightful criticism and comments, which enabled us to further improve our
work.
Finally, we want to express our sincere gratitude to our family and friends for their
unwavering support.

iv

Table of Contents

Abstract ix

1 Introduction 1
1.1 Overview . 1
1.2 Motivation . 2
1.3 Objective . 2
1.4 Contribution . 3
1.5 Thesis Organization . 3

2 Background Study 5
2.1 Bug . 5
2.2 Task . 5
2.3 Developer’s Proficiency . 6
2.4 Bug Fixing Proficiency of Developer 6
2.5 Task Solving Proficiency of Developer 7

3 Related Works 9
3.1 Bug Fixing . 9
3.2 Developer’s Proficiency . 11

4 Dataset Generation and Methodology 14
4.1 Dataset Description . 14
4.2 Data Processing . 14

4.2.1 Removing Outlier: . 15
4.2.2 Filtering Bugs and Tasks . 16
4.2.3 Mean Time Calculation for bug-fixing and task solving 16
4.2.4 Dataset Quality . 17

4.3 Methodology . 18
4.3.1 Calculation of Developer Proficiency 18
4.3.2 Calculating Task Solving Proficiency 18
4.3.3 Calculating Bug Fixing Proficiency 20
4.3.4 Survey . 23

v

5 Results and Discussion 25
5.1 Metrics for Developer Proficiency 25

5.1.1 Task Solving Proficiency . 25
5.1.2 Bug Fixing Proficiency . 26
5.1.3 Validity of Developer Proficiency 31

5.2 Proficiency and Bug Fixing Accuracy 32
5.2.1 Bug Fixing Accuracy . 32
5.2.2 Bug Fixing Efficiency . 34

5.3 Developer’s Efficiency over time . 35
5.4 General Discussion . 37

6 Conclusion and Future Work 39

References 39

vi

List of Figures

3.1 Bug Fixing Architecture of the Research [1] 10
3.2 An Overview of the Three Steps in the mentioned Research Method-

ology [2] . 11
3.3 Methodology of Yadav et al. [3] . 13

4.1 IQR Method . 15
4.2 Data Processing . 17
4.3 Calculation of Developer’s Proficiency 23

5.1 Factors affecting Developer Proficiency 26
5.2 Proficiency Level Vs Mean time to solve bug 28
5.3 Visual Representation of our SEM Model 30
5.4 Structural Model . 31
5.5 Bug Fixing Accuracy Vs Developer Proficiency 33
5.6 Bug Fixing Time of Familiar Component 35
5.7 Bug Fixing Time of Unfamiliar Component 36
5.8 Developer’s Efficiency Over Time 37

vii

List of Tables

4.1 Dataset Description . 15
4.2 Dataset Description After Removing Outliers 16
4.3 Description of the Survey Respondents 24
4.4 Impact Factor Values . 24

5.1 Developer Proficiency Calculated for some developers 27
5.2 Developers and number of component/s they have worked in 27
5.3 Measurement indices for Bug Fixing Proficiency Model 30
5.4 Measurement indices for Task Solving Proficiency Model 30
5.5 Impact Factor Values by SEM . 31
5.6 Poficiency comparison (Importance weight from Practitioners vs Im-

portance weight from SEM) . 32
5.7 Proficiency of Developers with Bug Fixing Accuracy 33
5.8 Level of Proficiency of Developers with average Bug Fixing Accuracy 34
5.9 Mean time to solve a bug and Developer’s Proficiency over time . . . 36

viii

Abstract

In the modern software systems’ evolution, solving bugs efficiently and reducing the
life cycle of a bug has become increasingly essential. The developer’s proficiency has
a huge impact in this case. So our target is to study the effect of developer’s profi-
ciency on bug fixing efficiency and accuracy. We conducted an empirical study on a
bug repository of an open-source project containing approximately 42574 issues. We
proposed six factors, Total number of solved tasks, Mean time to solve a task, Task
reopen ratio, Total number of fixed bugs, Mean time to fix a bug, and Bug reopen ratio
for calculating developers’ proficiency value. For validating our metric we also im-
plemented Structural Equation Model (SEM) in our study. The analysis of your data
revealed that the selected factors do indeed impact a developer’s proficiency. Addition-
ally, assigning bugs to proficient developers was found to reduce the bug life cycle. We
also observed that, highly proficient developers may not always exhibit a high level of
accuracy. Therefore, to effectively reduce the bug life cycle, it is crucial to focus on
both the proficiency and accuracy levels of developers.

ix

Chapter 1

Introduction

In this chapter, we present the overview of the whole research work. The outline
includes a comprehensive motivation problem explanation as well as the objective of
our study. Also it discussed the contribution made with our study. Thesis organization
is noted at the last part of this chapter for readers easiness.

1.1 Overview

For businesses in the technology sector, determining proficiency of developers is a
crucial duty. It is essential for assessing and comparing developers’ technical abilities
and performance, which facilitates wise recruiting, promotion, and project assignment
decisions. Organizations must effectively analyze and comprehend the capabilities of
their developers if they are to assure the efficacy of projects. This study intends to
investigate the crucial elements of determining developer proficiency, concentrating
on the assessment of technical abilities and performance metrics.

Technical skill and performance skill assessment is done by using our metrics to
calculate number of bug fixed and task solved and their reopen ratio. Companies can
find developers who have the skillsets required for particular positions and responsi-
bilities by calculating proficiency of developers. They can use it to find knowledge
gaps and design specialized training plans to improve developer abilities. Using the
result companies can assign developers in the project in the field in which they have
experience or expertise.

Organizations will be able to create high-performing teams, spend resources wisely,
and guarantee the successful completion of software development projects with a greater
understanding of developer proficiency. In the end, firms may boost their competi-
tiveness and provide high-quality software solutions to match the constantly changing
needs of the industry by enhancing developer performance and productivity.

1

1.2 Motivation

Project managers might allocate maintenance resources more effectively if they had
a thorough grasp of how familiar developers and assignees were with issues. To our
knowledge, no research has been done on the impact of developer familiarity on prob-
lem fixes. [2] [4]

Non-functional defects, such as performance and security bugs, are mentioned
in much too broad terms [5] or within too narrow contexts (such as cloud comput-
ing systems or Android apps). [6] [7] This makes it even harder for researchers to
identify the topic problems for their studies, forcing them to recommend doing time-
consuming, expensive, and frequently fruitless searches in software repositories from
beginning. [7]

It is observed that [2] -

1. One prevalent aspect in cases of bug fixing is familiarity: developers are more
likely to be assigned to fix the flaws they themselves introduced;

2. The impacts of familiarity on bug fixing are complex. Although developers cure
their own defects more quickly (and effectively), they are more likely to create
new bugs when addressing existing ones (which results in less efficiency).

Using developer familiarity we want to propose a proficiency calculating metric
which takes into account both bug fixing and task committing.

1.3 Objective

The ability of developers to solve problems and resolve bugs is essential for the pro-
duction of high-quality software that is delivered on schedule. However, a thorough
evaluation and comparison of the effects of technical abilities and performance indi-
cators on developer proficiency in these fields is required. We discovered that bug fix-
ing proficiency and task solving proficiency are not simultaneously taken into account
when allocating developers to them after conducting an exhaustive study regarding
various sorts of issues and how to detect and solve them. [8]

Existing research frequently lacks a comparative approach or concentrates on spe-
cific components of proficiency. Therefore, these current methodologies take into ac-
count either bug fixing or source commit actions, which may lead to suggestions from
inactive or unskilled developers. Only taking into account one piece of information
cannot make up for another, which reduces the accuracy of developer suggestions. By
examining and assessing the relationship between performance measures and devel-
oper proficiency in bug fixing and task solving, we want to close this gap.

2

So from the above cases we designed our study to explore the impacts of developer
proficiency on bug and task fixing time and reopen count by answering the following
four research questions (RQs):

RQ1: What metrics effect the developer proficiency?
We studied from our dataset that developer proficiency depends on task and bug

solving proficiency and their reopen count.
RQ2: Does a developer’s proficiency affect bug-fixing efficiency and accuracy?
After calculating developer proficiency using the metric we checked each devel-

oper’s proficiency in the dataset and then studied the relation between developer profi-
ciency and bug-fixing efficiency and accuracy.

RQ3: Does a developer’s bug fixing efficiency and accuracy increases over time?
In our study, after calculating developer proficiency using the metric, we checked

each developer’s proficiency over three time range to check whether with time, their
efficiency and accuracy increases or not.

1.4 Contribution

For the research questions we collected the dataset of Apache project Spark. Then
we proposed a metric to calculate task solving proficiency and bug fixing proficiency.
Using these two we calculated total proficiency of the developers and their profieciency
in a certain time range. From there we draw a conclusion that whether developer’s
proficiency has any impact on bug fixing accuracy and efficiency and also whether
developer’s proficiency increases over time. From there we can also state that bug
fixing lifecycle will reduce if developers are assigned to bugs and task on that area in
which they are proficient on.

1.5 Thesis Organization

In chapter 2, we included all the necessary background studies that would be used fur-
ther in the paper.

In chapter 3, we presented all the related works that have influenced our study di-
rectly or indirectly.

In chapter 4, we described the whole methodology, starting from the dataset col-
lection, data processing, and lastly the methodology of the research as a whole.

In chapter 5, we discussed the result generated in our methodology stage. The

3

elaboration of the result is also included in this chapter.

In chapter 6, the thesis work’s future pursuit and our plan to follow it through. And
with that, it concludes the thesis work.

4

Chapter 2

Background Study

Inside this chapter, we discuss about the background studies that are related to our
research.

2.1 Bug

In the world of software development, a bug is a fault, flaw, or defect in a program that
causes unexpected behavior or inaccurate output. Numerous factors might cause bugs
to develop, including poor logic, poor data management, and incompatibility issues.
Bugs can lead to unexpected behavior, program crashes, erroneous output, security
issues, or inaccuracies. Finding and fixing bugs is a critical stage in the software
development process to ensure the program functions as intended, meets the necessary
requirements, and respects the accepted quality standards. We concentrated on both
functional and non-functional bugs in our investigation.

2.2 Task

A task in software development is a particular action or piece of work that needs to
be completed in order to accomplish a given project objective. To design and manage
tasks, a project management system or task tracking application is typically utilized.
They represent distinctive bits of work that are a component of the overall develop-
ment process. It may be necessary to build code for specific features, fix issues, make
documentation, conduct tests, or carry out any other task necessary for software de-
velopment. Tasks are usually assigned to certain developers or teams and frequently
have associated deadlines, priorities, and dependencies in order to facilitate effective
collaboration and progress monitoring within the project. Effective task management
results in timely completion and the achievement of project milestones.

5

2.3 Developer’s Proficiency

Developer proficiency refers to a software developer’s level of ability, knowledge, and
expertise in their area of specialty. It includes a range of technical talents, problem-
solving methods, domain expertise, and soft skills that give developers the ability to
efficiently design, create, and manage software solutions.

Here, we combine task-solving ability with bug-fixing ability to consider developer
proficiency.

2.4 Bug Fixing Proficiency of Developer

Bug fixing proficiency refers to a developer’s ability to effectively and efficiently iden-
tify and resolve software bugs or defects. It encompasses their skills, knowledge, expe-
rience, and approach in addressing and resolving issues reported by users or discovered
during the development process. A developer with strong bug fixing proficiency can
contribute to improving software quality, user satisfaction, and the overall stability of
the system.

Here are some factors that contribute to bug fixing proficiency:

• Number of Bugs Fixed: The number of bugs fixed refers to the quantity of soft-
ware bugs or defects that a developer has successfully resolved within a given
timeframe. It is a metric used to measure a developer’s productivity and effec-
tiveness in addressing and resolving reported issues.

• Context and Nature of the Project: Task solving proficiency can be influenced
by the nature of the project, the team’s workflow, and the specific development
phase. For example, in the early stages of a project, more time may be dedicated
to planning and design, resulting in a lower number of tasks completed. Simi-
larly, if the project involves extensive research or debugging, fewer tasks may be
completed compared to tasks focused on implementation.

• Bug Severity and Complexity: It is essential to consider the severity and com-
plexity of the bugs when evaluating the number of bugs fixed. Some bugs may
be relatively simple and straightforward to resolve, while others may be more
complex and time-consuming. Focusing solely on the quantity of bugs without
considering their severity or impact on the software’s functionality may not pro-
vide an accurate assessment of a developer’s performance.

• Bug Classification and Categorization: To ensure a fair and meaningful com-
parison, bugs should be classified and categorized consistently. Different types

6

of bugs may require varying levels of effort and expertise to fix. By categorizing
bugs based on their nature or impact, it becomes possible to analyze the dis-
tribution of bug fixes and identify any patterns or areas that require additional
attention.

• Average Time to fix Bugs: The average time to fix bugs is a metric that measures
the average duration it takes for a developer or a development team to resolve
reported software bugs or defects. It provides insights into the efficiency and
effectiveness of the bug fixing process. The average time to fix bugs should be
evaluated in the context of the severity and impact of the bugs being addressed.
Critical or high-priority bugs may require immediate attention and faster reso-
lution, while lower priority or cosmetic issues may have longer timeframes for
resolution. The severity of bugs should be considered when assessing the aver-
age time to fix. [9]

• Bug Reopen Count: Bug reopen count refers to the number of times a bug or
issue is reopened or reactivated after it has been marked as resolved or closed. It
is a metric that tracks the frequency with which bugs resurface or require further
attention after they were considered fixed. It is a indicator of bug quality. By
reducing the bug reopen count, development teams can enhance software quality,
improve customer satisfaction, and streamline their bug fixing processes. [3]

2.5 Task Solving Proficiency of Developer

Task solving proficiency refers to a developer’s ability to effectively and efficiently
solve tasks or problems encountered during software development. It encompasses
their problem-solving skills, domain knowledge, technical expertise, and experience
in applying appropriate strategies to overcome challenges and achieve task objectives.
A developer’s task solving proficiency can have a significant impact on the quality,
timeliness, and success of software development.

Here are some factors that contribute to task solving proficiency:

• Number of Tasks Solved/Committed: The number of tasks solved or commit-
ted refers to the quantity of tasks that a developer has successfully completed
or delivered within a given time-frame. The number of tasks solved by an in-
dividual developer is a significant factor behind the task solving proficiency of
that developer. It indicates the developer’s productivity and ability to meet task
requirements and deadlines. The specific measurement of tasks solved or com-
mitted can vary depending on the development process or project management
methodology being used.

7

• Context and Nature of the Project: Task solving proficiency can be influenced
by the nature of the project, the team’s workflow, and the specific development
phase. For example, in the early stages of a project, more time may be dedicated
to planning and design, resulting in a lower number of tasks completed. Simi-
larly, if the project involves extensive research or debugging, fewer tasks may be
completed compared to tasks focused on implementation.

• Average Time to solve/commit Tasks: The total time or average time to commit
tasks by an individual developer has a huge imapact on his proficiency. The more
proficient he is, the less time he should take to solve or commit a task. [10]

• Task Reopen Count: Task reopen count refers to the number of times a task
or issue has been reopened or reactivated after it was considered resolved or
closed. It is a metric used to track the frequency of tasks or issues that require
additional attention or fixing even after they were initially addressed. It is a
factor influencing the Task Solving Proficiency of the developer who resolved or
closed the said task.

• Task severity and Complexity: It is essential to consider the severity and com-
plexity of the tasks when evaluating the number of tasks solved or committed
for understanding the proficiency. [10] Some tasks may be relatively small and
straightforward, while others may be more complex and time-consuming. Fo-
cusing solely on the quantity of tasks without considering their complexity may
not accurately reflect a developer’s performance.

• Task Definition: Clearly defining what constitutes a "task" is crucial for ac-
curate measurement. Tasks can vary depending on the project management
methodology being used, such as user stories, tickets, or specific deliverables.
Consistency in defining tasks ensures a fair comparison across developers and
allows for meaningful analysis of productivity.

8

Chapter 3

Related Works

Inside this chapter, we discuss about the works that are related to our research.

3.1 Bug Fixing

Bug fixing has become an important topic of research now, there have been few re-
search on this topic. The paper [11] is a Systematic Literature Review and Classi-
fication" by Shafiq, Hafiz, and Arshad (2014) presents a systematic literature review
and classification of automated debugging and bug fixing solutions. The authors aim
to provide an overview of the existing research in this field and classify the different
techniques and approaches used in automated debugging and bug fixing.

The authors conducted a comprehensive review of the literature related to auto-
mated debugging and bug fixing, considering papers published up to the year 2014.
They analyzed a total of 127 papers and identified various techniques and approaches
used in automated debugging and bug fixing solutions.

The writers divided the selected solutions into various categories based on their
analysis. They [11] classified the procedures according to their attributes, such as the
kinds of bugs they deal with, the kinds of analyses done, the debugging techniques
employed, and the degree of automation offered.

The study [11] emphasizes a number of significant discoveries. First of all, it
demonstrates that a variety of methods and techniques are employed in automated de-
bugging and issue solving. These include dynamic analysis, constraint solving, sym-
bolic execution, program slicing, and many others.

Additionally, the authors discovered that various issue kinds, including syntax mis-
takes, logical errors, and runtime errors, call for various debugging approaches. The
report also addresses the many debugging techniques used, including fault localisation,
fault prediction, and fault correction.

In another study a formal method to bug fixing in software development is pre-
sented in the paper [1]. The authors suggest a way for systematizing the detection and

9

correction of flaws using formal verification techniques.
The authors begin by highlighting the value of bug repair in software develop-

ment and the difficulties involved. They contend that conventional debugging methods
frequently rely on trial and error, which makes the procedure laborious and prone to
mistakes. They [1] provide a formal strategy that makes use of formal verification
methods to overcome these problems.

Figure 3.1: Bug Fixing Architecture of the Research [1]

The main procedures of their [1] formal bug-fixing methodology are described in
the paper. First, a mathematical model is used to formally specify the software’s flawed
behavior. The issue in the model is then found and localized using formal verification
techniques. The authors suggest a methodical procedure for finding the fault and then
updating the model to correct it.

The authors give case studies on actual software systems to illustrate the viability of
their [1] strategy. They emphasize how their approach effectively found and resolved
defects in these systems as proof that their formal bug-fixing methodology is applicable
in practice.

10

3.2 Developer’s Proficiency

Developer familiarity refers to the level of knowledge and experience a developer has
with a particular codebase or software project. It encompasses their understanding of
the code structure, design patterns, dependencies, and overall system behavior.

Many studies ([12–14]) have shown that human factors have a significant influence
on software quality. Some previous studies ([15, 16]) indicated that with the increase
of team size, the communication and coordination in the team would be worse. It may
slow down the development of software and cause more defects ([13,17]). The similar
result was also found in Windows 7 that when more developers worked on a binary,
the failures of it would increase ([12, 14]).

In a recent paper [2], they investigated how developer familiarity with a codebase
affects the bug fixing process in software development. The authors conducted an em-
pirical study to analyze the impact of developer familiarity on bug fixing performance
and outcomes. The study involved analyzing the bug fixing activities of 162 devel-
opers from a large software development organization. The developers worked on a
total of 3,464 bug reports, allowing for a comprehensive examination of the effects of
familiarity on bug fixing. They analyzed -

Figure 3.2: An Overview of the Three Steps in the mentioned Research Methodology [2]

• Developer Familiarity Metrics: The researchers used several metrics to mea-
sure developer familiarity, including the number of prior bug fixes in the same
module, the number of prior changes to the same module, and the time since the
last modification to the same module. These metrics were used to gauge differ-
ent aspects of developer familiarity with the codebase.

• Bug Fixing Performance: The study evaluated bug fixing performance based
on three aspects: bug resolution time, bug resolution rate, and bug fixing effort.

11

These metrics were used to assess the efficiency and effectiveness of developers
in addressing reported bugs.

In recent studies numerous work have been done to relate developer skills with
bug fixes. By assigning a bug to an expert developer of that particular categories will
reduce the time to fix the bug and it’s chance to reopen.

The research by Zaman et al. [18] worked on who fix a certain bug of Firefox
projects and through this it gets easier to assign bug later. Their analysis found that
developers with comparatively higher expertise were given security bug fixes. The
research by Imseis et al. [19] worked on the same topic but on Chromium project bug
repository. They discovered that more experienced developers were given security
issues and experience is measured by the number of bugs a person has already fixed.
Our study will verify that if we assign developers to bugs based on their skills then the
span of the lifecycle of the bug fixation will minimise.

Some researchers also suggested ways to anticipate bug-fixing efforts. Panjer [20],
for instance, suggested using machine-learning algorithms to estimate the time needed
to resolve a defect. Using neural networks on a NASA dataset, Zeng and Rine [21]
suggest predicting the bug-fix effort. Marks et al. [22] found that a Random Forest
method can accurately forecast the class (low or high fix effort) of a bug repair with a
success rate of 65%. Song [23] suggested association rule-based techniques for antic-
ipating bug associations and bug-fixing effort. Weiß et al. [9] investigated the lifespan
of bugs and suggested using the kNN approach to estimate the amount of effort needed
to address bugs in the JBoss project.

Existing bug triage approaches for developer recommendation systems are mainly
based on machine learning (ML) techniques. These approaches have shown low pre-
diction accuracy and high bug tossing length (BTL) [3]. Another study [3] proposed
a method for ranking software developers based on their expertise score to aid in bug
triaging processes. Bug triaging involves assigning bugs to appropriate developers for
resolution based on their expertise and availability.

The expertise score was computed using various parameters, including code churn,
past bug fixing experience, and contribution to relevant code modules. They presented
a bug triage model that utilizes the expertise scores of developers to determine the
most appropriate developer for bug resolution. The model takes into account factors
such as expertise score, workload, and bug priority to make informed bug assignment
decisions. The proposed method was evaluated using a dataset obtained from an open-
source bug tracking system. The evaluation aimed to assess the effectiveness of the
expertise score-based ranking in accurately assigning bugs to developers with the ap-
propriate expertise.

The results of the evaluation indicated that the proposed expertise score-based rank-

12

ing method improved the accuracy of bug assignment in bug triaging. The approach
effectively identified developers with the relevant expertise, leading to more efficient
bug resolution.

Figure 3.3: Methodology of Yadav et al. [3]

Understanding the work practices of software developers by exploring the factors
that influence developers’ task performance and engagement is essential for improving
productivity and software development outcomes. A study [10] investigates devel-
opers’ participation and engagement in different tasks. It explores the extent to which
developers actively engage in tasks, collaborate with others, and contribute their exper-
tise and knowledge. The speed at which developers resolve tasks identifies as a factor
that contribute to faster task resolution. It also examines how task characteristics, such
as complexity and novelty, influence the time it takes for developers to complete tasks.

The results of the study [10] indicate that task complexity, task novelty, and task
interdependence significantly impact developers’ work practices. Developers tend to
have higher participation and engagement in tasks that are less complex and less novel.
The speed of task resolution is influenced by task complexity, with more complex tasks
taking longer to complete.

13

Chapter 4

Dataset Generation and Methodology

The whole dataset pre-processing and methodology will be discussed in this chapter.
The dataset preprocessing starts with the extraction of the bug repository from Jira and
the methodology describes all the data analysis processes considered for answering the
research questions.

4.1 Dataset Description

In this section, the dataset description which is collected from the Jira bug repository
will be discussed. Also, this section discusses the effective factors that we have con-
sidered to calculate the impact of a developer’s proficiency on bug-fixing accuracy and
efficiency.

In this study, we collected bug reports of Spark from Apache Software Foundation
(ASF) that are all managed in JIRA ITS. The Apache Spark project has well-structured
issue-tracking system in JIRA and a version control system in Github. The project has
a total of 42574 issues within the starting date 12/12/2012 and ending date 1/17/2023
in JIRA. Among these, we considered only the issues those were fixed. The number of
fixed issues is 25156. In this dataset, there were around 1032 unique developers who
worked on 37 unique components. We filtered the Bug issues and Task issues from
the dataset. There are around 8936 fixed Bug Issues and 16220 fixed task Issues in
the dataset. We have considered all the tasks, subtasks, improvements, new features as
task issues in our analysis. We followed the Interquartile range or (IQR) method for
detecting and removing the outliers from our dataset.

4.2 Data Processing

In the empirical study on the impact of developer proficiency on bug-fixing efficiency
and accuracy, the collected dataset will undergo several data processing steps to pre-

14

Table 4.1: Dataset Description

Number of total issues 42574

Number of issues with fixed status 25156

Number of fixed bug issues 8936

Number of fixed task issues 16220

Number of developers 1032

Number of components 37

pare it for analysis. The following steps will be undertaken:

4.2.1 Removing Outlier:

The dataset undergoes pre-processing to transform and clean the data as needed. This
may involve removing irrelevant columns, handling missing values, and addressing
any data inconsistencies or anomalies. For removing the outliers we have used IQR
method. The IQR method is briefly described here in this section

Figure 4.1: IQR Method

Interquartile Range Method (IQR)

[24]The interquartile range (IQR) method is commonly used to identify and remove
outliers from a dataset. Outliers are data points that significantly deviate from the rest
of the data and can skew statistical analyses and modeling results.

Here’s how the IQR method works:

15

1. Calculate the IQR, which is the range between the first quartile (Q1) and the
third quartile (Q3). The quartiles divide the dataset into four equal parts, with
Q1 representing the 25th percentile and Q3 representing the 75th percentile.

2. Determine the lower bound and upper bound for outliers. The lower bound is
calculated by subtracting 1.5 times the IQR from Q1, and the upper bound is
calculated by adding 1.5 times the IQR to Q3.

3. Identify any data points that fall below the lower bound or above the upper
bound. These points are considered outliers.

4. Decide how to handle the outliers. You can either remove them from the dataset
or apply a specific treatment, such as replacing them with a different value or
imputing missing data.

By removing outliers, the IQR method helps to ensure that statistical analyses and
models are more robust and reflective of the general patterns and trends in the data.
However, it’s important to note that outlier removal is a subjective decision and should
be based on the specific context and goals of the analysis.

After removing the outliers the status of the dataset is shown on the table below.

Table 4.2: Dataset Description After Removing Outliers

Data Before After

Number of total issues 42574 30303

Number of issues with fixed status 25156 20159

Number of fixed bug issues 8936 5756

Number of fixed task issues 16220 14080

4.2.2 Filtering Bugs and Tasks

The bug data is filtered to focus specifically on the bug-related entries, removing any
unrelated or irrelevant information. Similarly, the task data is filtered to isolate the
task-related entries, discarding any non-relevant information.

4.2.3 Mean Time Calculation for bug-fixing and task solving

The filtered task data is used to calculate the mean time taken to solve tasks by indi-
vidual developers. This calculation provides insights into the efficiency of developers

16

in resolving tasks. In the same way, the filtered bug data is used to calculate the mean
time taken to fix bugs by individual developers. This calculation provides insights into
the accuracy and efficiency of developers in addressing bugs.

The mean time to solve a task and mean time to fix a bug is computed for individual
developers to compare their efficiency levels. the mean time is also used to calculate
their proficiency.

The filtered bug dataset and the task dataset are divided into three spans of time pe-
riods which are 2013-2015, 2016-2018, and 2019-2023. Using this time-wise filtered
dataset, the developer’s efficiency increasing over time is checked.

Figure 4.2: Data Processing

4.2.4 Dataset Quality

Understanding the goals and objectives of your dataset is crucial for assessing its qual-
ity and determining the appropriate analysis techniques. Since the dataset is collected
from an open-source project and contains information about issues within a specific
date range, we can derive several metrics to evaluate the developers’ proficiency. For
example, The total number of bugs provides an overall count of the bugs recorded
within the dataset. It helps in understanding the magnitude of bug-related issues.

The total number of tasks solved calculates the total count of tasks that developers
have successfully completed. It gives an indication of their productivity and ability

17

to accomplish assigned tasks. We also considered the severity of the task that the
developers solved.

Mean time to fix a bug calculates the average time taken to resolve a bug. It helps
in assessing the efficiency and speed of developers in addressing and fixing bugs.

Reopen bug and task ratio measures the frequency of bugs or tasks being reopened
after they were initially considered resolved. It can highlight potential issues with the
quality of work or the understanding of requirements.

By analyzing these metrics, you can gain insights into the proficiency and perfor-
mance of developers in the open-source project.

4.3 Methodology

This section outlines the methodology employed in conducting an empirical study on
the impact of developer proficiency on bug fixing efficiency and accuracy. The study
aims to investigate how the proficiency of developers influences their ability to ef-
ficiently and accurately fix software bugs. The methodology encompasses the data
analysis, calculating developer’s proficiency, accuracy and familiarity check.

4.3.1 Calculation of Developer Proficiency

In the empirical study on the impact of developer proficiency on bug fixing efficiency
and accuracy, developer proficiency will be calculated based on task proficiency and
bug proficiency metrics.

DPi = T SPi +BFPi (4.1)

Here, i = Specific Developer

DP = Developer Proficiency

TS = Task Solving Proficiency

BF = Bug Fixing Proficiency

The following steps will be undertaken to calculate developer proficiency:

4.3.2 Calculating Task Solving Proficiency

Task proficiency will be calculated for each developer using the following metrics:

• Number of Tasks Solved (TS)
In our study, the dataset is analyzed to determine the total number of tasks solved
by each developer. These tasks were categorized based on their severity level,
and we computed the total number of tasks in each category. However, we dis-
carded the category of "Trivial tasks" as they do not have any impact on the

18

result of our analysis. To assign weights to each category of tasks, we assumed a
weighting factor denoted by "W" in the formula mentioned below. The weight-
ing factor ranged from 2 to 5, with the most severe category, "Blocker tasks,"
receiving the highest weighting value of 5, and the least severe category, "Minor
tasks," receiving the lowest weighting value of 2.

By multiplying the total number of tasks in each category by their corresponding
weighting factors, it is possible to incorporate the severity level into our calcu-
lation of a developer’s proficiency. This approach allows us to assign higher im-
portance to more critical tasks while evaluating a developer’s performance. This
metric reflects the developer’s ability to successfully address and complete tasks.

T Si = ∑BlockerTaski ×W4+∑CriticalTaski ×W3+∑Ma jorTaski ×W2+∑MinorTaski ×W1

Here, W1 = 2, W2 = 3, W3 = 4, W4 = 5

• Task Reopen Ratio (TRR)
In our study, we examined the dataset to identify the ratio of the number of times
tasks solved by each developer were reopened to the total number of tasks they
solved. We calculated this reopen ratio for each type of task, considering the
four categories you previously defined.

To incorporate the impact of task reopen ratios into the overall measure of a de-
veloper’s proficiency, we have multiplied each reopen ratio by its corresponding
weighting factor. Each category of tasks was assigned a specific weighting fac-
tor to reflect its severity or importance in the analysis.

By summing up the weighted reopen ratios for all task categories, we obtained
the total reopen ratio of a particular developer. This approach allows us to cap-
ture the tendency of a developer’s tasks to be reopened, providing insights into
their accuracy and the quality of their initial fixes.

By considering the reopen ratios and applying appropriate weighting factors, we
can effectively incorporate the accuracy aspect into the evaluation of a devel-
oper’s proficiency.

T RRi =
∑TasksReopenedi

TotalTaskSolvedi
(4.2)

• Mean Time to Solve Tasks (MTST)
In our study, we have utilized the dataset to calculate the average time taken

19

by each developer to solve tasks. To determine the time required to complete a
specific task, we subtracted the issue resolved time from the issue created time.
This calculation provides the duration between the creation and resolution of an
issue.

The average time to solve tasks for each developer reflects their efficiency and
speed in resolving issues. This metric helps evaluating how quickly developers
can address and resolve tasks. It allows for comparisons between different de-
velopers in terms of their efficiency in task solving and highlights potential areas
for improvement.

By considering the average time to solve tasks, we can assess the speed and
effectiveness of developers, which is crucial for reducing the bug life cycle and
improving overall software system quality.

MT STi =
n

∑
i=1

Resolvedtimei −Createdtimei

• Task Solving Proficiency
In our study, we calculated the task solving proficiency using three factors: TS,
TRR, MTST. To determine the overall impact of these factors on a developer’s
proficiency, we assigned impact factors to each of them.

To establish the impact factors, we conducted a survey among industry profes-
sionals. This survey aimed to gather insights and opinions from experienced
individuals in the field regarding the relative importance and impact of the TS,
TRR, and MTST factors.

By gathering the responses from the survey participants, we were able to deter-
mine the impact factors for TS, TRR, and MTST. These impact factors represent
the weighting or importance given to each factor in calculating a developer’s
task solving proficiency. This approach also enhances the validity and relevance
of our findings and provides a more comprehensive evaluation of a developer’s
proficiency in task solving.

In the subsequent section,we will discuss in details about the survey, such as its
methodology, participant demographics, and the final results observed from the
survey responses.

T SPi =
(T Si × I1)− (T RRi × I2)

MT STi × I3
(4.3)

4.3.3 Calculating Bug Fixing Proficiency

Bug proficiency will be calculated for each developer using the following metrics:

20

• Number of Bugs Fixed (BF)
In our study, we analyzed the filtered bug dataset to determine the total number
of bugs solved by each developer. Similar to the tasks, these bugs were also
categorized based on their severity level. However, we chose to exclude the
category of "Trivial bugs" as they have no impact on the overall analysis.

To incorporate the severity level into the calculation of a developer’s proficiency,
we introduced a weighting factor denoted by "W" in the formula. The weighting
factor ranged from 2 to 5, with "Blocker bugs" assigned the highest weighting
value of 5 and "Minor bugs" assigned the lowest weighting value of 2.

By multiplying the total number of bugs in each category by their correspond-
ing weighting factors, we effectively assigned higher importance to more severe
bugs when evaluating a developer’s performance. This approach recognizes that
resolving critical bugs carries more significance in the bug fixing process.

This also enables us to assess their ability to address and fix more severe issues,
which can significantly impact the overall quality and stability of software sys-
tems.

BFi = ∑BlockerBugi ×W4+∑CriticalBugi ×W3+∑Ma jorBug×W2+∑MinorBug×W1

Here, W1 = 2, W2 = 3, W3 = 4, W4 = 5

• Bug Reopen Ratio (BRR)
In our study, we examined the dataset to determine the ratio of the number of
times bugs solved by each developer were reopened to the total number of bugs
they solved. This reopen ratio was calculated for each type of bug, taking into
account the previously defined four categories.

To incorporate the impact of bug reopen ratios into the overall measure of a
developer’s proficiency, we multiplied each reopen ratio by its corresponding
weighting factor. Each category of bugs was assigned a specific weighting factor
that reflects its severity or importance in the analysis.

By summing up the weighted reopen ratios for all bug categories, we obtained
the total reopen ratio of a particular developer. This metric allows us to assess
the tendency of a developer’s bugs to be reopened, providing insights into the
accuracy and quality of their initial bug fixes.

By evaluating both the proficiency and accuracy levels of developers, we can
gain a better understanding of their overall bug fixing performance and identify
areas for improvement in order to reduce the bug life cycle efficiently and accu-
rately.

21

BRRi =
∑BugsReopenedi

TotalBugFixedi
(4.4)

• Mean Time to Fix Bugs (MTFB)
By calculating the average time taken by each developer to solve bugs, we have
obtained a metric that reflects their efficiency and speed in resolving issues. This
metric can be valuable for evaluating and comparing the performance of different
developers in terms of bug fixing.

Analyzing the average time to solve bugs allows us to identify potential areas
for improvement. This information can be used to allocate resources, provide
targeted training or support, and optimize bug resolution processes.

Assessing the speed and effectiveness of developers in bug fixing is essential
for reducing the bug life cycle. By identifying areas where developers may be
experiencing challenges or delays, we can implement strategies to address those
issues promptly. It’s important to note that while the average time to solve bugs
provides useful insights, it should be considered alongside other relevant metrics
and factors. Bug complexity, severity, and the specific circumstances surround-
ing each issue should also be taken into account for a comprehensive evaluation
of developers’ bug fixing capabilities.

MT FBi =
n

∑
i=1

Resolvedtimei −Createdtimei

• Bug Fixing Proficiency (BFP)

We calculated the bug fixing proficiency for each developer using the factors BF,
BRR, and MTFB, along with their corresponding impact factors obtained from
the survey. By multiplying each factor by its respective impact factor, we are
weighting their contributions to the overall bug fixing proficiency score.

This methodology allows us to incorporate the insights gathered from industry
professionals and give more importance to factors that were deemed more influ-
ential in determining bug fixing proficiency. By considering the impact factors,
we are providing a more nuanced evaluation that reflects the relative significance
of each factor.

In the next section, the survey for calculating the impact factors will be de-
scribed.

BFPi =
(BFi × I4)− (BRRi × I5

MT FBi × I6
(4.5)

22

Figure 4.3: Calculation of Developer’s Proficiency

Now in the next section we are going to discuss about the survey with professionals
in the field. The survey aims to gather expert opinions and insights on the importance
and relevance of the factors considered in the proficiency calculations.

4.3.4 Survey

We conducted survey to compute the impact facotrs for our metric. By approaching
30 industry professionals through LinkedIn and Facebook and receiving 15 responses,
we have obtained valuable insights from a diverse set of participants. Considering
professionals with at least 2 years of experience, and with most respondents having
over 3 years of experience, ensures that the opinions gathered are from individuals
with relevant expertise in the field of software development.

The fact that we received responses from professionals working in 11 different
renowned software companies adds to the diversity of perspectives and further en-
hances the credibility of our findings. This suggests that the impact factors identified
in our survey may have broader applicability and relevance within the industry.

We have used likert scales with a range from 1 to 5 which allows respondents to
express their opinions on the impact of each factor in a graded manner. This enables
us to capture the relative importance assigned to each factor by the participants, and
subsequently calculate the impact factors for our proficiency metric.

23

Table 4.3: Description of the Survey Respondents

Respondent Company Name Designation Years of Experience

1 DreamOnline Ltd. Sr. Manager 10 years+

2 Samsung RnD Bangladesh Chief Engineer 5-7 years

3 CHEQ Inc. Sr. Technical Project
Manager

10 years+

4 Renaissance Group System Administrator 10 years+

5 Samsung Software Developer 2-3 years+

6 Microsoft Corporation Sr. Software Engineer 10 years+

7 MathWorks Software Engineer 5-7 years

8 Amazon Web Services Sr. Software Develop-
ment Engineer

5-7 years

9 Kaz software Sr. Software Engineer 5-7 years

10 Kona Software Lab Ltd. Lead Software Engi-
neer

10 years+

From the result of the survey we got the following values for our selected factors.
So the values of the impact factors are mentioned in the table

Table 4.4: Impact Factor Values

Factors Denoted as Impact Value

Number of tasks solved by a
developer

I1 3

Mean time to solve a task I2 5

Task reopen ratio I3 5

Number of bugs solved by a
developer

I4 2

Mean time to solve a bug I5 3

Bug Reopen Ration I6 5

The professionals’ perspectives and feedback are considered in determining the
relative importance of each factor. The weighting factors are adjusted or refined based
on the insights gained from the survey.

24

Chapter 5

Results and Discussion

In the empirical study on the impact of developer proficiency on bug fixing efficiency
and accuracy, the analysis focused on identifying the metrics that significantly influ-
ence developer proficiency. There are three questions of our study and in our study we
focused on these three.

5.1 Metrics for Developer Proficiency

Developer proficiency can be viewed to influenced by Bug Fixing Proficiency and Task
Solving Proficiency. For calculating these factors, we propose a metrics. Using this
we calculate developer proficiency.

5.1.1 Task Solving Proficiency

• Number of Tasks Solved: The analysis revealed that a higher number of tasks
solved by developers positively correlated with their proficiency. Developers
who consistently solved a larger number of tasks demonstrated higher profi-
ciency levels.

• Reopen Ratio of Tasks: It was observed that a lower reopen count of tasks
indicated better proficiency. Developers who had fewer instances of tasks being
reopened after initial fixes demonstrated higher proficiency.

• Mean Time to Solve Tasks: The analysis indicated that a shorter mean time to
solve tasks correlated with higher proficiency levels. Developers who efficiently
resolved tasks in less time exhibited better proficiency.

25

5.1.2 Bug Fixing Proficiency

• Number of Bugs Fixed: The analysis found that developers who fixed a greater
number of bugs exhibited higher proficiency levels. A higher bug-fixing capa-
bility reflected improved proficiency in addressing and resolving bugs.

• Reopen Ratio of Bugs: It was observed that a lower reopen count of bugs in-
dicated better proficiency. Developers who had fewer instances of bugs being
reopened after initial fixes demonstrated higher proficiency.

• Mean Time to Fix Bugs: The analysis showed that a shorter mean time to
fix bugs correlated with higher proficiency levels. Developers who efficiently
resolved bugs in less time showcased better proficiency.

Figure 5.1: Factors affecting Developer Proficiency

Considering these factors we calculate the Developer Proficiency (DP). We use the
following equation -

DPi = T SPi +BFPi (5.1)

DPi =
(T Si × I1)− (T RRi × I2)

MT STi × I3
+

(BFi × I4)− (BRRi × I5
MT FBi × I6

(5.2)

Table 5.1 shows some calculated values of some randomly chosen developers. This
calculation has been done by using our formula from equations 5.1 and 5.2. We con-
sidered both bug fixing and task solving proficiencies.

In our study, we get the value of developer proficiency from range 10 - 120 approx-
imately. We labelled the developers as highly proficient if they have proficiency range
between 60-120, medium proficient if the proficiency range is between 30-60 and if
the range is between 10-30 then low proficient.

26

Table 5.1: Developer Proficiency Calculated for some developers

Developer TS MTST TRR BF MBFT BRR Proficiency

viirya 217 22.126 11 110 24.327 11 23.6846

cloud_fan 419 16.668 9 120 31.91667 6 50.5691

sarutak 135 15.673 4 94 17.553 5 21.2654

yumwang 216 22.221 10 36 20.5556 3 19.5896

XinrongM 112 11.25056424 3 2 3 0 18.9324

davies 201 25.8099 12 89 40.382 9 18.7801

Table 5.2: Developers and number of component/s they have worked in

Developer No. of Components worked on

zsxwing 16

mengxr 14

holdenkarau 4

joshrosen 19

srowen 21

marmbrus 7

codingcat 12

Table 5.2 shows the names of some developers and the number of component/s
he has worked on. Working in a number of components gives the developer more
knowledge about the project. His bug fixes are less likely to trigger additional bugs in
other components.

Figure 5.2 shows that with the increase in proficiency, the mean time to fix a bug
decreases. This matches with our calculation.

27

Figure 5.2: Proficiency Level Vs Mean time to solve bug

To validate our formula and the assumptions of the weight of the impact factors
that we got from the survey, we use SEM (Structural Equation Modelling) to cross
check the level of impact factors of the factors affecting developer proficiency.

Structural Equation Modelling (SEM)

Structural Equation Models explain relationships between measured and latent vari-
ables and relationships between latent variables. Latent variables: which can’t be mea-
sured directly. For example, “Intelligence” is a latent variable that can be measured
by measured variables such as exam scores, IQ scores, psych test scores, etc. SEM is
used to convert the measured variables into latent variable.

Why SEM?

• It will lets us analyze the influence of predictor variables on numerous dependent
variables simultaneously.

• It will allow us to account for measurement error and even addresses error in
predicting relationships

• It is capable of testing an entire model instead of just focusing on individual
relationships. This is in direct contrast to similar techniques like regression that
can test only one dependent variable at a time, does not account for measurement
error, and focuses on singular relationships instead of the collective whole.

28

Confirmatory Factor Analysis

We perform Confirmatory Factor Analysis for the factor to assess the unidimensional-
ity of the measurement items. The results of the confirmatory factor analysis indicate
that eacg item loaded on its respective underlying concept and all loadings were sig-
nificant.

Construct reliabilities were also assessed for every construct. The model fit indices
indicate that the measurement model was a good fit to the data.

Some indicators of fitness of the model-

• CMIN/df
CMIN/df refers to the ratio of the chi-square statistic (CMIN) to the degrees of
freedom (df). The chi-square statistic is a measure of the discrepancy between
the observed data and the model-implied covariance matrix. The degrees of
freedom represent the number of independent pieces of information available
for model estimation.

• Degree of freedom
The degrees of freedom represent the number of independent pieces of informa-
tion available for model estimation. The degrees of freedom are often used in
the calculation of fit indices, such as the chi-square statistic (CMIN) and its ratio
to degrees of freedom (CMIN/df).

• CFI
CFI is a relative fit index that compares the fit of the proposed model to a base-
line model. The CFI ranges from 0 to 1, with values closer to 1 indicating better
fit. A CFI value of 1 represents a perfect fit, while values above 0.90 are gener-
ally considered as indicative of a good fit. However, the exact threshold for an
acceptable fit can vary depending on the specific research context and the com-
plexity of the model being tested.

• RMSEA
The RMSEA is a population-based fit index that measures the average discrep-
ancy between the implied model and the observed data, adjusted for model com-
plexity and the number of degrees of freedom. It is typically interpreted as a
measure of lack of fit or error in the model. The RMSEA ranges from 0 to infin-
ity, with lower values indicating better fit.

Table 5.3 and Table 5.4 shows the measurement indices for both Task Solving and
Bug Fixing Proficiency Models. They indicate a good model fit.

29

Table 5.3: Measurement indices for Bug
Fixing Proficiency Model

Indices Values

CMIN/df 0.09

CFI 0.963

RMSEA 0.132

Table 5.4: Measurement indices for Task
Solving Proficiency Model

Indices Values

CMIN/df 0.072

CFI 0.9832

RMSEA 0.256

Structural Model Analysis

The hypothesis here in this model is that number of bug count and mean bug fixing time
have a positive effect on Bug Fixing Proficiency, while number of may bug reopen ratio
has a weaker or indirect effect on Bug Fixing Proficiency.

Figure 5.3: Visual Representation of our SEM Model

Similarly the hypothesis here in the other model is that number of task count and
mean task solving time have a positive effect on Task Solving Proficiency, while num-
ber of may Task reopen ratio has a weaker or indirect effect on Bug Fixing Proficiency.

After implementation we get the covariance and correlation between the observed
and unobsereved variables.

30

Figure 5.4: Structural Model

5.1.3 Validity of Developer Proficiency

From the SEM Model, we get the new importance weight of the factors affecting the
Bug Fixing Proficiency and Task Solving Proficiency. The new weights are:

Table 5.5: Impact Factor Values by SEM

Factors Denoted as SEM Impact
Value

Number of tasks solved by a
developer

SEM_I1 0.9

Mean time to solve a task SEM_I2 1

Task reopen ratio SEM_I3 0.6

Number of bugs solved by a
developer

SEM_I4 0.18

Mean time to solve a bug SEM_I5 0.93

Bug Reopen Ration SEM_I6 0.89

Using these new importance weights we calculate the proficiency of the developers
again to validate these new values with our calculated ones. A comparison between
these proficiency value is shown in Table 5.6.

From Table 5.6 we can say that the ratio of each row is more or less similar. For de-

31

Table 5.6: Poficiency comparison (Importance weight from Practitioners vs Importance weight
from SEM)

Developer Proficiency Proficiency (SEM)

rxin 31.16789009 84.25353221

davies 13.66634942 46.94027764

mengxr 13.49231294 35.63962171

cloud_fan 12.09294203 39.12516773

joshrosen 8.732933354 35.06608786

yumwang 8.692820225 22.53917845

zsxwing 8.356762238 36.13587568

veloper named rxin, proficiency calculated with out impact weight is 31.16789, while
with that of SEM, it is 84.253553. Again, for a developer named davies, with profi-
ciency 13.66634 has proficiency of 46.9402 in terms of SEM. So these two calculations
are consistent with one another. So our importance weight complies with the SEM.

Answer to the RQ1: Developer proficiency depends on bug fixing and task solving

proficiency. Each has three impact factors, mean time to fix/solve, their total number

and their reopen ratio.

5.2 Proficiency and Bug Fixing Accuracy

As we mentioned earlier in our study, we labelled the developers as highly proficient
if they have proficiency range between 60-120, medium proficient if the proficiency
range is between 30-60 and if the range is between 10-30 then low proficient.

Research Question 2 aimed to investigate the relationship between a developer’s
proficiency and bug-fixing efficiency and accuracy.

5.2.1 Bug Fixing Accuracy

The analysis also indicated a strong association between a developer’s proficiency and
bug-fixing accuracy. Developers with higher proficiency levels demonstrated a higher
level of accuracy in identifying and resolving bugs. Their fixes were more precise and
reliable, resulting in fewer instances of reopened bugs. The study found that developers
with higher proficiency tended to exhibit better bug-fixing accuracy.

32

We calculate Bug Fixing Accuracy using the following equation -

Accuracyi =
∑(Bug_Fixedi)−∑(Bug_Reopeni)

∑Bug_Fixed_by_that_Developeri
(5.3)

Table 5.7: Proficiency of Developers with Bug Fixing Accuracy

Developer Proficiency Bug Fixing Accuracy

dongjoon 112.1009 0.8125

william 63.9719 0.8591

cloud_fan 50.5691 0.875

maxgekk 45.2505 0.7142

ala.luszczak 15.1341 0.5333

joshrosen 14.5759 0.6111

Table 5.7 represents our calculation and we found out that with proficiency, bug
fixing accuracy increases.

To analyse the data, we plotted accuracy and proficiency of the developers from
table 5.7 and have seen that developers with high proficiency has more accuracy 70%
of the time and if proficiency is less then with accuracy decreases.

Figure 5.5: Bug Fixing Accuracy Vs Developer Proficiency

Table 5.8 shows the average bug fixing accuracy for the three levels of proficiency.
So with proficiency level bug fixing accuracy increases in most cases, around 70% of
the time.

33

Table 5.8: Level of Proficiency of Developers with average Bug Fixing Accuracy

Level of Proficiency Average Bug Fixing Accuracy

High Proficiency Level 0.8015

Medium Proficiency Level 0.6142

Low Proficiency Level 0.5233

5.2.2 Bug Fixing Efficiency

The analysis demonstrated a significant impact of a developer’s proficiency on bug-
fixing efficiency. Developers with higher proficiency levels exhibited improved effi-
ciency in fixing bugs. They were able to identify and address bugs more swiftly and
effectively compared to developers with lower proficiency levels. The study found a
positive correlation between developer proficiency and bug-fixing efficiency, suggest-
ing that developers with higher proficiency tend to resolve bugs in a more efficient
manner.

In our study we plotted for each developer their bug fixing time comparing with
the component’s mean time to fix a bug and have seen that efficiency of developer for
fixing bugs in a familiar component is more and they fix it in less time then average
bug fixing time of a component.

The analysis demonstrated a significant impact of a developer’s proficiency on
bug-fixing efficiency. Developers with higher proficiency levels exhibited improved
efficiency in fixing bugs 50% of the time. They were able to identify and address bugs
more swiftly and effectively compared to developers with lower proficiency levels.
The study found a positive correlation between developer proficiency and bug-fixing
efficiency, suggesting that developers with higher proficiency tend to resolve bugs in a
more efficient manner.

In our study we plotted for each developer their bug fixing time comparing with
the component’s mean time to fix a bug and have seen that efficiency of developer for
fixing bugs in a familiar component is more and they fix it in less time then average
bug fixing time of a component.

In our study we plotted for each developer their bug fixing time comparing with
the component’s mean time to fix a bug and have seen that efficiency of developer for
fixing bugs in a unfamiliar component that is the component where they have only
fixed bug but haven’t solved any task is less and they fix it in more time then average
bug fixing time of a component.

So from this our result shows that efficiency of a developer increases when he
solves bug in a familiar component and decreases if the component is unfamiliar.

34

Figure 5.6: Bug Fixing Time of Familiar Component

Overall, the empirical study provides compelling evidence that a developer’s profi-
ciency significantly affects bug-fixing efficiency and accuracy. Developers with higher
proficiency levels tend to exhibit improved efficiency and accuracy in fixing bugs.
These findings suggest that organizations should focus on enhancing developer pro-
ficiency through training, skill development initiatives, and knowledge sharing plat-
forms to optimize bug-fixing processes.

Answer to the RQ2: With the increase in Developer’s Proficiency, his Bug-fixing Effi-

ciency and Accuracy increases 50% of the time.

5.3 Developer’s Efficiency over time

The empirical study aimed to explore the impact of developer proficiency on bug fixing
efficiency and accuracy over time. The result analysis focused on understanding how a
developer’s efficiency in fixing bugs evolved and whether proficiency had a discernible
influence.

In our data a pattern was visible that with proficiency efficiency increases over
time. We divided the time range in 2013 to 2015, 2016 to 2018 and 2019 to 2023.

Table 5.9 shows a positive correlation between developer proficiency and bug fixing
efficiency over time. Developers who demonstrated higher proficiency levels tended

35

Figure 5.7: Bug Fixing Time of Unfamiliar Component

Table 5.9: Mean time to solve a bug and Developer’s Proficiency over time

Time Span 1
(2013-2015)

Time Span 2
(2016-2018)

Time Span 3
(2019-2023)

Developers MTSB Proficiency MTSB Proficiency MTSB Proficiency

techaddict 110.25 0.11 87 0.52 1 5.03

ueshin 85.4 2.72 20 4.00 2.11 15.53

maropu 68.67 1.02 27.3 2.53 21.875 6.21

srowen 54.76 2.81 38.12 3.04 11.26 5.25

to exhibit more significant improvements in efficiency. Their enhanced technical skills
and domain knowledge translated into quicker bug resolution, reduced rework, and
improved accuracy in fixing bugs.

Now plotting the value in a graph that is Developer with mean time to fix a bug we
have seen that over the time period for each developer their efficiency increases and if
efficiency increases proficiency also increase.

Overall, the empirical study provides compelling evidence that developer profi-
ciency has a significant impact on bug fixing efficiency over time. As developers’ pro-
ficiency levels increase through targeted interventions, their efficiency in fixing bugs
improves and sustains over the course of the study. These findings underscore the
importance of investing in continuous proficiency development to optimize developer
performance in bug fixing activities.

36

Figure 5.8: Developer’s Efficiency Over Time

Answer to the RQ3: Developer’s Bug Fixing Efficiency increases with time.

5.4 General Discussion

The findings of our empirical investigation on the effect of developer skill on bug
fixing efficiency and accuracy offer strong support for the idea that performance in
bug fixing is greatly influenced by proficiency. The research results provide profound
understandings of the value of developer proficiency and its implications for improving
bug-fixing procedures.

First off, the significant positive association between developer skill and bug-fixing
effectiveness emphasizes the critical role that technical expertise, subject-matter exper-
tise, and task proficiency play in reducing bug-solving times. Our research unequivo-
cally shows that developers with greater competency levels are better able to locate and
fix errors in a timely and efficient manner. Shorter development cycles and increased
output are the results of this improved efficiency. These findings highlight how crucial
it is to give proficiency-related factor development inside organizations top priority be-
cause these variables directly influence how effectively bugs are fixed.

Second, a basic characteristic of bug fixing performance is shown by the relation-

37

ship between developer skill and problem repair accuracy. According to our analysis,
developers with higher competency levels are more accurate at locating and fixing de-
fects, which leads to fewer cases of reopened bugs. The importance of proficiency in
assuring the caliber of bug solutions and reducing rework is shown by this finding.
Organizations may greatly improve the accuracy of bug patches, which will increase
software stability and customer happiness, by investing in the skill development of de-
velopers.

Our study also looked at the long-term effects of developer skill on the effectiveness
and precision of bug fixes. The findings offer strong proof that developers’ bug-fixing
ability increases as their proficiency increases thanks to targeted training programs
and skill-enhancement activities. This research emphasizes how successful continuous
proficiency development operations are in bringing about long-lasting and sustainable
improvements in bug fixes. To take advantage of these advantages, businesses should
continuously offer developers the chance to improve their skills while promoting a
culture of lifelong learning.

Organizations must give the evaluation and improvement of developer proficiency
in bug repair activities top priority in light of these findings. Organizations may make
educated judgments about investments in training, mentoring, and knowledge-sharing
platforms by recognizing the enormous influence that competency has on bug fix-
ing efficiency and accuracy. In addition, encouraging a culture of ongoing learning
and development within software development teams will allow competency to build
over time, resulting in continuously better bug-fixing performance and overall software
quality.

As a result, our study emphasizes how crucial developer expertise is to the ef-
fectiveness and efficiency of issue fixing. Organizations can streamline bug-fixing
procedures, cut down on development cycle time, increase software reliability, and
eventually improve customer pleasure by comprehending and using the power of pro-
ficiency.

38

Chapter 6

Conclusion and Future Work

In this research work, we have done a comparative analysis and found that the Doc2Vec
model works the best for difficulty based question classification. The motivation be-
hind this work was to recommend questions to suitable users based on the question
difficulty level. So, for that, we needed to categorize the questions into different dif-
ficulty levels, which we have already done. In our work, we mostly considered Java-
related questions. As Java is the most popular programming language with a well-built
developers’ community, we could gather diverse types of questions in Stack Overflow
to support our research work.

So, our future works will explore the performance of our model on other program-
ming languages like C#, Python, Pearl, Ruby, etc. Other than that, to build the desired
recommendation system, the user base is also needed to be categorized for getting
the question answered. The users can be categorized based on their activities on Stack
Overflow(asking and answering questions), expertise level, and activeness. To measure
the users’ expertise level, further works can be done, like proposing some framework
or model. The temporal data related to users’ activities are also essential for recogniz-
ing the active users because recommending questions to an inactive user will be futile.

And finally, we need a recommendation system that would recognize the hidden
relations between the question types and the users and recommend the questions to
users with enough expertise to answer the questions. So, there are a lot of scopes for
future works from this research work.

39

REFERENCES

[1] S. Kalvala and R. Warburton, “A formal approach to fixing bugs,” 09 2011, pp.
172–187.

[2] C. Wang, Y. Li, L. Chen, W. Huang, Y. Zhou, and B. Xu, “Examining the effects
of developer familiarity on bug fixing,” Journal of Systems and Software, vol.
169, p. 110667, 2020.

[3] A. Yadav, S. K. Singh, and J. S. Suri, “Ranking of software developers based on
expertise score for bug triaging,” Information and Software Technology, vol. 112,
pp. 1–17, 2019.

[4] V. R. Basili and B. T. Perricone, “Software errors and complexity: an empirical
investigation0,” Communications of the ACM, vol. 27, no. 1, pp. 42–52, 1984.

[5] A. Radu and S. Nadi, “A dataset of non-functional bugs,” in 2019 IEEE/ACM

16th International Conference on Mining Software Repositories (MSR). IEEE,
2019, pp. 399–403.

[6] D. J. Dean, H. Nguyen, X. Gu, H. Zhang, J. Rhee, N. Arora, and G. Jiang, “Perf-
scope: Practical online server performance bug inference in production cloud
computing infrastructures,” in Proceedings of the ACM Symposium on Cloud

Computing, 2014, pp. 1–13.

[7] A. B. Sánchez, P. Delgado-Pérez, I. Medina-Bulo, and S. Segura, “Tandem: A
taxonomy and a dataset of real-world performance bugs,” IEEE Access, vol. 8,
pp. 107 214–107 228, 2020.

[8] A. Khatun and K. Sakib, “A bug assignment approach combining expertise and
recency of both bug fixing and source commits.” in ENASE, 2018, pp. 351–358.

[9] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, “How long will it take to
fix this bug?” in Fourth International Workshop on Mining Software Repositories

(MSR’07: ICSE Workshops 2007). IEEE, 2007, pp. 1–1.

40

[10] S. A. Licorish and S. G. MacDonell, “Exploring software developers’ work prac-
tices: Task differences, participation, engagement, and speed of task resolution,”
Information & Management, vol. 54, no. 3, pp. 364–382, 2017.

[11] H. Shafiq and z. Arshad, “Automated debugging and bug fixing solutions: A
systematic literature review and classification,” Ph.D. dissertation, 11 2014.

[12] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu, “Don’t touch my
code! examining the effects of ownership on software quality,” in Proceedings

of the 19th ACM SIGSOFT symposium and the 13th European conference on

Foundations of software engineering, 2011, pp. 4–14.

[13] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and K. M. Carley, “Identification
of coordination requirements: Implications for the design of collaboration and
awareness tools,” in Proceedings of the 2006 20th anniversary conference on

Computer supported cooperative work, 2006, pp. 353–362.

[14] N. Nagappan, B. Murphy, and V. Basili, “The influence of organizational struc-
ture on software quality: an empirical case study,” in Proceedings of the 30th

international conference on Software engineering, 2008, pp. 521–530.

[15] F. P. Brooks Jr, The mythical man-month: essays on software engineering. Pear-
son Education, 1995.

[16] B. Curtis, H. Krasner, and N. Iscoe, “A field study of the software design process
for large systems,” Communications of the ACM, vol. 31, no. 11, pp. 1268–1287,
1988.

[17] A. Espinosa, R. Kraut, J. Lerch, S. Slaughter, J. Herbsleb, and A. Mockus,
“Shared mental models and coordination in large-scale, distributed software de-
velopment,” 2001.

[18] S. Zaman, B. Adams, and A. E. Hassan, “Security versus performance bugs: a
case study on firefox,” in Proceedings of the 8th working conference on mining

software repositories, 2011, pp. 93–102.

[19] J. Imseis, C. Nachuma, S. Arifuzzaman, M. Zibran, and Z. A. Bhuiyan, “On the
assessment of security and performance bugs in chromium open-source project,”
in International Conference on Dependability in Sensor, Cloud, and Big Data

Systems and Applications. Springer, 2019, pp. 145–157.

[20] L. D. Panjer, “Predicting eclipse bug lifetimes,” in Fourth international workshop

on mining software repositories (MSR’07: ICSE workshops 2007). IEEE, 2007,
pp. 29–29.

[21] H. Zeng and D. Rine, “Estimation of software defects fix effort using neural net-
works,” in Proceedings of the 28th Annual International Computer Software and

41

Applications Conference, 2004. COMPSAC 2004., vol. 2. IEEE, 2004, pp. 20–
21.

[22] L. Marks, Y. Zou, and A. E. Hassan, “Studying the fix-time for bugs in large
open source projects,” in Proceedings of the 7th International Conference on

Predictive Models in Software Engineering, 2011, pp. 1–8.

[23] Q. Song, M. Shepperd, M. Cartwright, and C. Mair, “Software defect association
mining and defect correction effort prediction,” IEEE Transactions on Software

Engineering, vol. 32, no. 2, pp. 69–82, 2006.

[24] J. Han, M. Kamber, and J. Pei, “2 - getting to know your data,” in
Data Mining (Third Edition), third edition ed., ser. The Morgan Kaufmann
Series in Data Management Systems, J. Han, M. Kamber, and J. Pei,
Eds. Boston: Morgan Kaufmann, 2012, pp. 39–82. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/B9780123814791000022

42

https://www.sciencedirect.com/science/article/pii/B9780123814791000022

	Abstract
	Introduction
	Overview
	Motivation
	Objective
	Contribution
	Thesis Organization

	Background Study
	Bug
	Task
	Developer's Proficiency
	Bug Fixing Proficiency of Developer
	Task Solving Proficiency of Developer

	Related Works
	Bug Fixing
	Developer's Proficiency

	Dataset Generation and Methodology
	Dataset Description
	Data Processing
	Removing Outlier:
	Filtering Bugs and Tasks
	Mean Time Calculation for bug-fixing and task solving
	Dataset Quality

	Methodology
	Calculation of Developer Proficiency
	Calculating Task Solving Proficiency
	Calculating Bug Fixing Proficiency
	Survey

	Results and Discussion
	Metrics for Developer Proficiency
	Task Solving Proficiency
	Bug Fixing Proficiency
	Validity of Developer Proficiency

	Proficiency and Bug Fixing Accuracy
	Bug Fixing Accuracy
	Bug Fixing Efficiency

	Developer's Efficiency over time
	General Discussion

	Conclusion and Future Work
	References

