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Abstract

Verifying a claim/statement using facts as evidence can be challenging, especially
when the evidence consists of multiple sentences, making it difficult for NLP models
to understand long-range dependencies. Most of the existing datasets provide claims
that can be verified by single-hop reasoning i.e., relevant evidence to support or deny
the claim can be found in a single evidence source. But the task becomes substantially
challenging when it is required to mine evidence from multiple sources to correctly
reach a verdict about the claim. Successful methods in single-hop verification task
struggle to perform at a higher level when provided with a claim that requires multihop
evidence in order to be verified. In light of the success of prompt learning in various
NLP applications, this thesis introduces prompt learning for the multi-hop claim veri-
fication task. Through extensive experimentation, our proposed prompt-based method,
which employs manually constructed prompts, has yielded promising results. By
fine-tuning language models with prompts, we have achieved an accuracy of 83.9%,
along with an enhanced cross-domain generalization performance. Additionally, we
conducted experiments in few-shot and zero-shot settings, which demonstrated that
prompt-based methods outperformed traditional supervised learning techniques that
rely on the fine-tuning paradigm. These results underscore the effectiveness of prompt
learning in the realm of claim verification.
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Chapter 1

Introduction

As a result of the deluge of data being produced every second, it is no longer practical
to carefully verify every piece of information we encounter. Since the invention of the
printing press, people have worried about the transmission of false information. How-
ever, with the advent of the Internet and the proliferation of social media, the pace of
disinformation dissemination has increased dramatically, with potentially catastrophic
results. This has caused automated fact-checking to become a challenging research
area within the Natural Language Processing research community.

To ensure the validity of a claim or statement, the process of claim verification
involves analyzing relevant evidence [1]. Since documents are composed of sentences,
one approach to achieve fact-checking is to automatically determine the relationship
between sentences, such as whether they support or contradict each other. For this, a
certain level of language comprehension and coherence of textual units is required. As
a result, the methods developed to solve the problem of fact verification belong to the
larger family of Natural Language Inference (NLI) systems. A basic NLI system may
not function so well when fact-checking becomes more sophisticated since long-range

Figure 1.1: Sample Claim Verification Example. (Adapted from [1])

1



dependencies and the sequence of a combination of sentences come into play. This is
particularly true when numerous evidence sentences are required to validate a single
claim. In order for a claim verification system to do its job, it must be given both the
original claim to be verified and a collection of evidence that may establish the claim
as true or false. Figure 1.1 shows a sample claim verification from Wikipedia articles.

1.1 Motivation and Scope

One of the first large-scale benchmark datasets for fact extraction and claim verification
is the one introduced by the FEVER shared task [2]. This task has been characterized
in the literature as a combination of three subtasks: Document Retrieval, Sentence

Retrieval, and Claim Verification [1]. In the Claim Verification module of the FEVER
shared task, more than 82% of the data sample requires just one evidence sentence to
predict the veracity of a claim [3]. However, in reality, it is often necessary to examine
numerous facts, which may originate from numerous source documents, in order to
assess the veracity of a claim making the overall verification task more challenging.
In some cases, only taking into consideration of a single evidence may lead to wrong
conclusion, an example case is described in the figure 1.2.

Figure 1.2: A sample Multihop Claim Verification

In this specific scenario, if a claim verification system solely relies on the first ev-
idence, it could potentially make an incorrect conclusion that the claim is supported.
The first evidence suggests that recovering patients develop immunity, which might
lead the system to infer that the existing immunity is sufficient and additional vaccina-
tion is unnecessary. However, a more accurate understanding emerges when consider-
ing the second evidence, which states that some individuals only develop weak natural

2



immunity that may not provide adequate protection. Therefore, for the sake of safety,
it is still advisable to administer further vaccine doses.

To overcome this challenge, a new dataset titled HoVer [4] was developed, with
claim verification requiring the accumulation of multiple evidence sentences from up
to four Wikipedia articles. The necessity for multi-sentence inference makes this a
challenge for both the retrieval process as well as for the claim verification.

In recent years, researchers have approached the task’s final module—claim ver-
ification—as a sequence classification problem and achieved state-of-the-art perfor-
mance via fine-tuning pre-trained language models (PLMs) [3, 5, 6]. However, this
pre-training and fine-tuning paradigm of language models require large task-specific
datasets for the downstream tasks due to the difference between the pre-training and
fine-tuning objectives [7]. Very recently, a new approach to pre-train language models
has emerged that leverages natural-language prompts along with task demonstrations
as context, keeping the objective of the downstream task similar to the pre-training
task [8–11]. This is achieved via appending an additional piece of text known as a
prompt to the input sample. This new method of prompt-based language model train-
ing has outperformed the widely used language model pre-training and task-specific
fine-tuning approaches, along with significantly better performance in few-shot and
zero-shot learning scenarios [7–11].

1.2 Problem Statement

Based on the discussion above, this research aims to develop a system that can accu-
rately verify a given claim by learning multihop reasoning between several evidence
sentences with the help of enabling the prompt learning technique in state-of-the-art
language models.

The specific objectives of this research are:

1. Formulating the claim verification task to a masked word prediction problem in
order to harness the vast knowledge base of state-of-the-art PLMs (Pre-trained
Language Models).

2. Filtering out the correct template prompt to use as input to the PLMs and also
searching for the best label words for different classes.

3. Training a robust architecture capable of capturing long-range dependencies be-
tween the evidence chains and correctly determining the veracity of the target
claim.
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1.3 Research Challenges

Creating a prompt-based claim verification system poses various challenges. Firstly,
the language models used for input must be reconfigured to effectively comprehend
the given prompts. Additionally, to leverage the vast pre-existing knowledge of these
models, the prompts should be organic and similar to original English passages, as the
models have been pre-trained on such articles.

Once a prompt is provided, the language model will produce one or multiple words
in place of a masked token. The subsequent step is to determine the correct category
of the original input claim using the predicted word. This involves selecting the most
suitable label words for each category, which demands careful experimentation and
filtering. Ultimately, the system must be robust enough to perform well in claim verifi-
cation across various domains, rather than being limited to excelling in a single dataset.

1.4 Research Contributions

The key contributions of this research can be summarized as follows:

• We introduce the prompt learning technique in the domain of fact extraction
and claim verification. Our proposed approach effectively harnesses extensive
knowledge from PLMs, resulting in a huge performance gain in the veracity
prediction of claims.

• We conduct extensive experiments with our proposed approach to demonstrate
its substantial generalization potential in a cross-domain scenario as well as in
few-shot learning scenarios. Moreover, we investigate the best natural language
template for the task of verifying claims in a prompt learning setup.

• We assess the zero-shot capability of ChatGPT1-like model (i.e., text-davinci-0032)
from OpenAI, compared to other transformer architectures, i.e., BERT, T5 etc.,
to set a new benchmark for zero-shot evaluation on the claim verification task.
We further analyze the quality of the responses provided by text-davinci-003
(the most competent GPT-3 model to date) to study its potential biases and hal-
lucinations, as well as the generation of misleading information, etc.

1https://openai.com/blog/chatgpt/
2https://platform.openai.com/docs/models/overview
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1.5 Organization

The rest of the dissertation is organized as follows. Chapter 2 discusses the background
and motivation for gait research. It also identifies the problems persistent in the exist-
ing literature. Chapter 3 presents a new gait recognition pipeline that is able to utilize
multi-scale, multi-stream features while avoiding overfitting. Chapter 4 analyzes the
performance of the proposed pipeline and compares it with other state-of-the-art sys-
tems. Chapter 5 concludes our discussion and provides direction for future research
scope.
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Chapter 2

Background Study

In this section, we first review the hisotorical developement of Natural Language Pro-
cessing(NLP) and claim verification as a NLP task , followed by reviewing the recent
studies on prompt-based language models.

2.1 Natural Language Processing

The interpretation of human or natural language by a computer program is the focus of
the subfield of Artificial Intelligence known as Natural Language Processing, or NLP
for short. It is a subfield of linguistics that investigates the intersection between data
science and the study of human language. Today, natural language processing (NLP) is
prospering as a consequence of significant advances in data availability and computer
capability. NLP can aid us with a broad variety of activities, and the domains of appli-
cation appear to be developing on a daily basis. For example: text classification, text
segmentation, Named-Entity recognition, sentiment analysis, fact verification, detec-
tion of illness, question aswering, machine translation, text summarization etc. When
we perform NLP on a text,initially it turns the input raw data into tokens which we
call tokenization, and then the tokens go through a number of procedures such as stop
word removal, lemmatization etc. After that, we take use of several word embedding
approaches in order to extract features from the processed data. After that, it monitors
the integrity of our input data by using trained pipelines. Finally, following assessment
we deploy the related job of NLP.

2.1.1 Word Representation:

Word representation, also known as word embedding, is the process of converting
text into numerical representations that machine learning algorithms and deep learning
architectures can interpret. Several techniques have been developed to achieve word
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embedding, each with its own characteristics and applications. This section provides a
brief overview of some popular word embedding techniques.

• Count Vector: The method known as the count vector technique requires the
construction of a matrix that illustrates the number of times each word appears
in a given text. The count vector matrix has dimensions of D by T, where D is
the number of documents and T is the size of the vocabulary. The dimensions
of the count vector matrix. Although this method is straightforward, it does not
convey the semantic meaning of the words in an appropriate manner.

• TF-IDF vectorization: This method re-weights the count features by taking into
account the number of times a word appears in a single document and the number
of times it appears in the whole corpus. In order to provide representations
that are richer in meaning, this method takes into consideration both the term
frequency (TF) and the inverse document frequency (IDF).

• Continuous Bag of Words (CBOW): this model was introduced by [12], and fo-
cuses on predicting the target word by estimating its likelihood given the context.
CBOW takes either a single word or a set of words from the context and uses
them to predict the target word. This approach simplifies the prediction task
by leveraging the context information to generate accurate word representations.
CBOW is particularly useful for applications where the context plays a signifi-
cant role in determining the meaning of a word.

• Skip-Gram model: this model was also introduced by [12], and takes a different
approach by attempting to predict the context given a word. It aims to generate
word representations that capture the relationships between words in terms of
their contextual usage. By predicting the surrounding context words based on
a given target word, the Skip-Gram model effectively captures words’ semantic
meaning and syntactic patterns.

• GloVe: the GloVe model proposed by [13] takes a different perspective on word
embedding. It utilizes co-occurrence statistics of words in a corpus to gener-
ate vector representations. GloVe captures the semantic relationships between
words and creates meaningful word representations by considering the global
statistics of word co-occurrences. This technique enables the identification of
similar words based on their distributional patterns and facilitates understanding
semantic relationships between words.

7



2.1.2 Modern Language Models:

The field of Natural Language Processing (NLP) has witnessed significant advance-
ments in recent years, leading to the development of more sophisticated and power-
ful models. These models have revolutionized the way we process, understand, and
generate natural language text. The evolution of language models can be decribed in
following sequences:

Neural Language Models: The neural language model employs a neural network
architecture to effectively model language patterns. Neural networks represent a ma-
chine learning approach inspired by the intricate functioning of neurons in the human
brain. They consist of interconnected layers of neurons that are specifically designed to
process complex data and extract meaningful information. In 2003, Bengio et al. [14]
proposed "A Neural Probabilistic Language Model," which demonstrated a notable
10-20% improvement in performance compared to the Trigram algorithm, as assessed
by perplexity score. Perplexity serves as a measure of the model’s ability to predict a
sequence of words accurately. This seminal work marked a significant advancement in
the field of language modeling. Subsequently, the development of the Recurrent Neu-
ral Network (RNN) emerged as a pivotal phase in neural network language modeling.
RNNs have become the prevailing approach for sequence-to-sequence (seq2seq) tasks,
finding applications in various domains such as natural language processing (NLP),
computer vision, and speech recognition. Notably, variants of RNNs [15], such as
Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) [16], have gar-
nered widespread adoption due to their effectiveness in capturing sequential dependen-
cies and mitigating the vanishing gradient problem. These advancements, collectively
referred to as deep learning, have transformed the landscape of NLP and other related
fields. Deep learning techniques, powered by neural networks, have become the de
facto standard for tackling complex tasks in language processing, computer vision,
and speech recognition. Their ability to learn hierarchical representations and model
intricate patterns has significantly elevated the performance and capabilities of systems
operating in these domains.

In summary, the neural language model, based on neural network architectures,
has revolutionized the field of NLP. The transition from traditional approaches to deep
learning, facilitated by techniques such as RNNs with LSTM and GRU, has signifi-
cantly enhanced the understanding and processing of language, leading to substantial
advancements in various applications.

Transformer Models: When it comes to the processing of sequence data, recurrent
neural networks (RNNs) [15] are absolutely necessary since these networks make it
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possible for the previous timestamp output of the network to be used as the input
for the upcoming processing step. Sequence-to-sequence processing, also known as
seq2seq processing, is one of the most important tasks in the field of natural language
processing (NLP). In this kind of processing, the input is a series of words or frames,
and the output is also a sequence of words or frames. Advanced RNN variations that
include attention mechanisms, such as Long Short-Term Memory (LSTM) [17] and
Gated Recurrent Units (GRU) have been used to address such issues. LSTM [17] and
GRU are two examples. However, these designs have difficulties in maintaining the
audience’s interest across lengthy sequences, and they often struggle to come up with
fresh phrase combinations. In addition, the sequential structure of these recurrent units
makes parallelization difficult, which in turn causes the training process to move at a
snail’s pace.

The next big breakthrough came with the introduction of Google’s transformer
architecture. [18] The problems that were highlighted before that were linked with
GRU and LSTM-based designs may now be solved thanks to the newly suggested
Transformer architecture. If there are enough resources available, the Transformer
design can provide attention over extended word sequences, enabling it to forecast the
importance between words. Transformer architecture proposes three new ideas: Self
Attention, Multi Headed Attention and Positional Embedding.

Self Attention: Self-attention, despite its name, functions in a somewhat different way
than other types of attention. Self-attention, in its most basic form, is characterized by
the capacity to permit the examination of all words included inside a particular phrase.
In the context of this discussion, "attention" refers to the degree to which a certain
target word is relevant to each individual word in the phrase. The computation of the
relevance score for each word in relation to the target word is made easier by self-
attention. Consider the following line as an illustration of this idea: "The animal didn’t
cross the street because it was too tired." The pronoun "it" raises the issue of which
component of the phrase it relates to, either "The animal" or "the street." The answer to
this question is not immediately clear. We are given a score for each word in the phrase
by self-attention, which indicates how relevant each word is to the target word. The
attention scores that were acquired following training are shown in Figure 2.1, with an
emphasis placed on the words that were given the most attention. The score for "The
animal" that represents the greatest level of attention is shown in the Figure 2.1.

Figure 2.2 provides a more in-depth illustration of the method used to generate
attention ratings. It illustrates the participation of three separate vectors—the Query,
the Key, and the Value—in the process. The Query, Key, and Value vectors are obtained
by multiplying the word embedding by one of three weight vectors (WQ, WA, or WV),

9



Figure 2.1: Attention of different words with “it" for the given example

and the results are then sorted in descending order. A dot product operation is applied
to the Query and Key vectors before calculating the score for each word.

Scoret = Qt ∗ kt (2.1)

The soft-max over each of the words is being computed right now. In order to stop
the gradient from exploding, the value of the soft maximum is then divided by the
square root of the dimension of the key vector. After that, the value of the softmax is
multiplied with the value that is determined for each word, and the results are totaled.
At that particular pivot point, the total represents the output of the self-attention layer.

Scoret = softmax(
Q ∗KT

√
dk

).V (2.2)

where, Q,K and V are the query, key and value vector respectively. Then the output
of self attention layer is sent to feed forward neural network.

Multi Headed Attention: Instead of using a single module for each word, the de-

10



Figure 2.2: Process of attention calculation

velopers of the Transformer architecture came up with a novel strategy that included
using several self-attention modules. This was done in place of the traditional method
of using a single module for each word. When the outputs of each self-attention layer
are concatenated, this innovation produces representations that are more accurate, as
the authors showed in their work. Figure 2.1 illustrates the output for the word "it"
received from multiple attentions, highlighting its importance to other words in the
phrase. This example expands upon the information shown in the preceding illustra-
tion. The authors of the study integrated a total of eight multi-headed attention pro-
cesses across all of the different layers.

Figure 2.3 illustrates the structure of the Transformer model so that a visual rep-
resentation of the model may be provided. During the processing that takes place in
an encoder block, the input embedding travels via the multiple-headed attention layer.
After that, information goes through what’s known as a feed-forward neural network.

11



Figure 2.3: The transformer Model Architecture(Courtesy of [18]

In between each layer, the output is first normalized, then it is supplemented with the
output from the layer below it by employing skip connections. After that, the infor-
mation that was produced by the encoder layer is sent to the encoder-decoder attention
block that is included inside the decoder. In its turn, the decoder takes the contextual
information and decodes it in order to build a new sequence.

Overall, the Transformer architecture makes use of numerous self-attention mod-
ules, which results in enhanced representations and a full grasp of contextual con-
nections. This is achieved by the employment of multiple self-attention modules.
The model includes encoder blocks, which include multi-headed attention and feed-
forward neural networks, as well as encoder-decoder attention blocks inside the de-
coder to allow successful context decoding. Additionally, the model includes encoder-
decoder attention blocks within the encoder.

Positional Embedding: In the fundamental design of the Transformer, there are no
recurrent units, which may appear counterintuitive given the common demand for se-
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quence data processing. Nevertheless, the authors of [18] proposed a surprising solu-
tion to this problem that may be implemented. They came up with a technique that
is now known as positional encoding. This encoding essentially specifies where each
word is located inside the phrase. The representation of the input sequence is made
more accurate thanks to this positional encoding approach. To explain, positional en-
coding is a way to include positional information into the Transformer model. This
information may be encoded in a vector. The model is able to acquire a grasp of
the relative locations and dependencies among the words in the sequence once the
unique positional embeddings have been assigned to each word in the sequence. This
is very necessary in order to capture the sequential nature of the incoming data suc-
cessfully. Because of the positional encoding strategy, the Transformer model is able
to get around the problem of having insufficient explicitly recurring units. This is
because the technique enables the model to implicitly capture and capitalize on the
sequential order of the words included inside a phrase. As a consequence of this,
the positional encoding system makes a contribution to a representation of the input
sequence that is more complete and efficient, which in turn makes it easier to make
accurate and context-aware predictions. In conclusion, the authors of the study intro-
duced positional encoding as a solution to the problem of the lack of recurrent units in
the Transformer design. This approach stores the positional information of each word
in the phrase, which improves the model’s capacity to capture sequential dependencies
and enables it to handle sequence data efficiently. Additionally, the model’s ability to
process sequence data is enhanced.

BERT: Bi Directional Encoder Representation of Transformers: Following the
emergence of transformer architecture in [18], there has been a significant advance-
ment in the field of Natural Language Processing (NLP). However, during that period,
the prevailing models were predominantly focused on specific tasks. In 2018, a piv-
otal development was introduced by [19] in the form of BERT (Bidirectional Encoder
Representation of Transformer). BERT revolutionized NLP by introducing a common
pretraining approach. It employed Masked Language Modeling and Next Sentence
Prediction techniques during pretraining. The Masked Language Modeling approach
enabled BERT to effectively capture context from both directions, while Next Sen-
tence Prediction enhanced its ability to comprehend sentence context. With the advent
of BERT, the concept of a generalized model design was introduced. After undergo-
ing pretraining, BERT became adaptable to fine-tuning for various downstream tasks.
Figure 2.4 depicts a generalized architecture of BERT.

Text-To-Text Transfer Transformer:The Text-To-Text Transfer Transformer, more
often known as the T5 model, is an effective framework for natural language processing
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Figure 2.4: Overall pre-training and fine-tuning procedures for BERT. Apart from output lay-
ers, the same architectures are used in both pre-training and fine-tuning. The same pre-trained
model parameters are used to initialize models for different down-stream tasks. During fine-
tuning, all parameters are fine-tuned. [CLS] is a special symbol added in front of every input
example, and [SEP] is a special separator token (e.g. separating questions/answers).(Courtesy
of [19])

(NLP) activities. It does this by converting the problems that are text-based into a
format that is typical for text-to-text communication. This makes it possible to solve
a broad variety of text-based language issues. The fundamental concept behind T5
is referred to as "transfer learning," in which the model is originally pre-trained on a
large dataset known as the "Colossal Clean Crawled Corpus." During this pre-training
phase, the model is allowed to learn generic representations of language and recognize
underlying patterns in the data.

Figure 2.5: Diagram explaining T5’s text-to-text framework..(Courtesy of [20])

In the T5 framework, input text is formatted such that it includes a prefix that in-
dicates the intended job, such as "translate to English," followed by the actual text on
which the operation should be done. For example, "translate to English." Because of
this, T5 is able to perform a wide range of jobs, such as translation, summarization,
question answering, and many more. The outcome of carrying out the particular op-
eration on the text that was provided as input is what is known as the model’s output.
The adaptability and scalability of T5 are two of its most remarkable characteristics. It
is simple to alter the task-specific prefix and train the model on data relevant to the par-
ticular NLP job in order to make it readily adaptable and extensible to a variety of NLP
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applications. Because of this, T5 is a flexible tool that may be used to solve a broad
variety of issues that are linked to language. The T5 model has garnered widespread
support from members of the NLP community because to its outstanding performance
on a number of different benchmarks. It provides a consistent and efficient method to
transfer learning, which enables academics and practitioners to harness its capabilities
for a broad range of linguistic problems. This is made possible by the fact that it offers
a transfer learning framework.

GPT-3: Significant progress has been achieved in natural language processing (NLP)
thanks in large part to the GPT-3 (Generative Pre-trained Transformer 3) model, an
advanced language model. It has the transformer design of the older GPT-2 but is far
bigger and more powerful. The original GPT architecture is described in Figure 2.6

Figure 2.6: The original GPT architecture (Courtesy of [21])

The large number of parameters in GPT-3’s design is what gives it its reputation for
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excellence in language processing and pattern recognition. GPT-3 has been pre-trained
on a vast trove of different text material, allowing it to pick up on the subtleties and
intricacies of language. The model makes use of a series of self-attention transformer
layers. These processes allow GPT-3 to create coherent and contextually relevant text
by successfully capturing linkages and dependencies between words. When it comes
to language-related tasks, GPT-3 shines. This includes, but is not limited to, text com-
pletion, translation, summarization, question answering, and more. It has shown ex-
ceptional performance in various tasks, often outperforming state-of-the-art results and
benchmarks. The capability of few-shot and zero-shot learning is one of GPT-3’s defin-
ing characteristics. The capacity to learn a new task with a limited number of examples
is called "few-shot learning," whereas "zero-shot learning" describes a model’s ability
to create replies or complete tasks without any prior training in that area. Because of
its adaptability and versatility, GPT-3 has found broad use in fields as diverse as vir-
tual assistance, content production, language translation, and even creative writing. Its
extensive vocabulary and comprehension of language make it a potent instrument for
solving a variety of natural language processing problems.

2.2 Fact Extraction and Claim Verification

The FEVER shared task [2] has introduced one of the first large-scale benchmark
datasets for fact extraction and claim verification. Most of the literature divided the
task into a three module pipeline: Document Retrieval, Sentence Selection and Claim

Verification. The baseline system proposed by [2] evaluated each of these three sub-
module separately and reported the final accuaracy on the test set. For the first step,
they filtered out k nearest relevant document in terms of the claim whose veracity
needs to be identified, with the help of the DrQA system proposed by [22], where they
rank the documents using cosine similarity between TF-IDF vectors. Next from the
filtered documents, the most relevant sentences are also selected using TF-IDF sim-
ilarity. Following this, a number of enhanced approaches were implemented for the
entire pipeline; these will be described in the following sections.

Initially, Thorne et al. [2] formulated the claim verification subtask as a Natural
Language Inference (NLI) that enabled them to concatenate all the evidence and the
claim together and pass it to an NLI model to get the final prediction. Following this,
Hanselowski et al. [23] proposed a method where they tackled the textual entailment
between the claim and the evidence sentence pairs by adapting the Enhanced Sequen-
tial Interface Model (ESIM) [24]. Later on, most of the contemporary works have
focused on employing language models such as BERT [19], GPT [21], etc., that are
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pre-trained on large datasets, to solve the claim verification subtask particularly. All
of the aforementioned approaches mainly focused on developing a claim verification
system based on the dataset introduced in FEVER, where most claims require a single
evidence sentence to be verified. Contrary to most prior work, in this paper, we also
utilize the HoVer [4] dataset that is more relevant to real-world scenarios where the
claims/statements need more than a single sentence to be authenticated.

2.2.1 Document Retrieval

An important opportunity for other academics to work on better methodology was
presented by the first baseline approach, which relied on the conventional cosine simi-
larity method to filter out relevant documents for review. The document retrieval base-
line achieved about 70% accuracy. Then the first breakthrough was proposed by [23],
where they were able to gain about 23% accuracy boost. This work describes an ad-
hoc entity linking approach that uses Wikipedia as a knowledge source. The goal is
to match entities mentioned in natural language claims to corresponding Wikipedia
articles. The approach involves three main steps: mention extraction, candidate arti-
cle search, and candidate filtering. Regular named entity extraction methods focus on
basic entity types such as Location, Organization, Person, etc., but in order to find rele-
vant Wikipedia documents, various categories of entities such as movie titles are of our
interest. That is why mention extraction is carried out using a constituency parser and
a heuristic that considers words before the main verb and the entire claim as potential
entity mentions. For example, a claim “Down With Love is a 2003 comedy film.” con-
tains the noun phrases ‘a 2003 comedy film’ and ‘Love’. Neither of the noun phrases
constitutes an entity mention, but the tokens before the main verb, ‘Down With Love’,
form an entity. The next phase of document retrieval is Candidate article search; it
is performed using the MediaWiki API1 to search for matches between potential en-
tity mentions and Wikipedia article titles. Similar to previous work on entity linking
by [25], candidate filtering removes articles that are longer than the entity mention and
do not overlap with the rest of the claim. The retrieved Wikipedia articles are supplied
to the next step in the pipeline. The system was evaluated on the development data and
was found to be effective.

2.2.2 Sentence Selection

After filtering a set of Wikipedia documents relevant to a claim, the subsequent mod-
ule of the pipeline involves selecting the most pertinent sentences from those docu-
ments. The baseline approach, proposed by [2], uses a ranking algorithm that ranks

1https://www.mediawiki.org/wiki/API:Main_page
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all sentences based on the TF-IDF similarity with the claim. To determine the tex-
tual entailment between the claim and other sentences, an RTE model is utilized. The
RTE model is essentially a multi-layer perceptron that employs a single hidden layer
and term frequency and TF-IDF cosine similarity between the claim and evidence as
features. The next big breakthrough in sentence selection module was achieved by En-

hanced Sequential Inference Model (ESIM). ESIM [22] with minor modifications were
used in [23] [26]. The modified ESIM (Enhanced Sequential Inference Model) ranks
sentences based on their relevance to a given claim. It takes a claim and a sentence as
input. The last hidden state of the ESIM is passed through a hidden layer connected
to a single neuron to generate a ranking score. This score is used to rank all sentences
from retrieved documents. To identify potential evidence, the five highest-ranked sen-
tences are selected. During training, the modified ESIM takes a claim and a set of

Figure 2.7: Sentence Selection Model (Courtesy of [23])

concatenated sentences as input. It uses a modified hinge loss function with negative
sampling to calculate the loss. The positive ranking score (sp) is obtained by feeding
the network a claim and the concatenated sentences from its ground truth evidence set.
The negative ranking score (sn) is obtained by randomly sampling five sentences from
Wikipedia articles that are not part of the ground truth evidence sets for the claim. Both
sp and sn are computed using the same ESIM, and the goal is to maximize the margin
between positive and negative samples.

During testing, an ensemble of ten models with different random seeds is deployed.
The score between a claim and each sentence in the retrieved documents is calculated
using the ensemble. The mean score of a claim-sentence pair across all ten models is
computed, and the pairs are ranked based on these scores. The top five pairs, along
with their corresponding sentences, are considered as the output of the model. With
the emergence of transformer-based models, there has been a growing trend in utilizing
the considerable efficacy of pre-trained knowledge within these models to ascertain
sentence relevance scores and subsequently filter sentences of highest ranking based
on a provided claim. [6] applied BERT based models with two different approach of
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pointwise and pairwise loss function while fine-tuning. Each input consists of a set
of sentences and also the claim. The pointwise approach requires each input to be
classified as either evidence or non evidence. And the exact loss function that is used
in this approach is as follows:

Losspoint =
N∑
i=1

yilog(pi) (2.3)

On the other hand, in pairwise approach, a positive and a negative sample are passed
through BERT embedding layers separately and then compared against each other by
a ranknet loss function, where the ouput from the positive sample and negative sample
are used to train the following loss function:

LossHinge
Pair =

N∑
i=1

max(0, 1 + oneg − opos) (2.4)

For both pointwise and pairwise experiments, a pre-trained BERT model was used.
For further training, a batch size of 32 and a learning rate of 2e − 5 were adopted for
one epoch. The mechanism of these two approach is depicted in Figure 2.8.

Figure 2.8: Pointwise sentence retrieval and claim verification (left), Pairwise sentence re-
trieval (right). (Courtesy of [6])

2.2.3 Multihop Iterative Sentence Selection:

By considering the methods mentioned so far, it becomes apparent that they all share
a common flaw. These approaches simultaneously filter out entire documents and sen-
tences, potentially resulting in inaccuracies. This is because there are instances where
an evidence sentence relies on the retrieval of a previous evidence sentence. Motivated
by this observation, a novel late interactive method has been proposed by [27]. This
research paper introduces Baleen, a cutting-edge multi-hop reasoning system. Baleen
enhances its efficacy through an iterative retrieval and compression procedure. This
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iterative procedure is repeated for T predetermined time increments. In the case of
HotpotQA, T is set to 2, whereas T is set to 4 in the case of HoVer.

At each time step, Baleen retrieves the top K passages using the query from the
previous phase. It then creates a new query for the current time step by extracting
and condensing relevant facts (sentences) from the passages retrieved. At each hop,
Baleen also summarizes each passage to reduce the search space, which makes it even
more efficient. This meticulous extraction and condensing mechanism plays an es-
sential role in refining the data required for reasoning. Once the retrieval process is
complete (i.e., t = T ), the final query is passed into the reader model to produce
the final predictions. The reader model makes accurate predictions using the refined
data obtained through the iterative retrieval and condensing stages. For the purpose of
determining Baleen’s efficacy, exhaustive experiments were conducted on prominent
question-answering and claim verification benchmarks, namely HotpotQA and HoVer.
The experimental results on HotpotQA demonstrate Baleen’s competitive passage re-
trieval performance. In addition, the HoVer results demonstrate its state-of-the-art
performance, which substantially exceeds the performance of baseline methodologies.

Overall, Baleen presents a novel strategy that employs iterative retrieval and con-
densing to enhance reasoning abilities in multiple-hop question-answering tasks. The
experimental findings confirm its efficacy and demonstrate its superiority over existing
techniques.

2.2.4 Claim Verification:

The final sub-task within the module pertains to claim verification, wherein a language
model is presented with a set of evidence sentences and a claim. The primary objective
is to predict the ultimate label, which can either be "Supported" or "Not Supported."
In the earlier approach, a neural semantic model is utilized. This model incorporates
GloVe and ELMo embeddings, supplemented by additional separate vectors that are
generated specifically for this purpose. [26] The additional vector is generated from
a Wordnet library meant to describe certain emotional features of a sentence. The
process is described in the following figure:

With the introduction of the encoder-decoder language model, subsequent method-
ologies naturally employed BERT-like models for the purpose of categorizing claims
into specific labels. In the publication referenced as [6], the authors selected the most
relevant five sentences from the sentence retrieval module. These sentences were sub-
sequently subjected to individual assessment using a BERT classification head, and
their outcomes were compared independently. Ultimately, the results were consoli-
dated to determine a final class label, which may be designated as either "Supported"
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Figure 2.9: Claim Verification via NSMN model. (Courtesy of [26])

or "Not Supported." The whole pipeline became significantly easier with BERT, as
demonstrated in the Figure 2.10.

Figure 2.10: Three-step pipeline evidence extraction and claim verification. (Courtesy of [6])

One significant drawback observed in previous approaches is their inability to ac-
curately consider the interdependency among evidence sentences, particularly when
a claim relies on a multi-hop reasoning chain encompassing several pieces of infor-
mation. To address this issue, graph-based approaches have shown some success by
establishing an evidence reasoning chain among multiple evidence sentences. The
GEAR framework, proposed by Zhou et al. in [28], offers a solution in claim verifica-
tion by employing a series of steps.

Firstly, a sentence encoder based on BERT is utilized to obtain representations for
both the claim and the retrieved evidence. The final hidden state of the [CLS] token in
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BERT serves as the representation for each input sentence. To guide the message pass-
ing process in the reasoning graph, the evidence and claim are concatenated to extract
the evidence representation, taking into account the claim’s informative guidance.

Next, an evidence reasoning network (ERNet) is constructed to facilitate the prop-
agation of information among the evidence nodes. A fully-connected evidence graph
is established, where each node represents a piece of evidence. Self-loops are added
to enable each node to receive information from itself during the message propaga-
tion. Attention coefficients between each node and its neighbors are computed using
a multi-layer perceptron (MLP). These coefficients are then normalized using the soft-
max function. Through the iterative application of the ERNet across multiple layers,
information is effectively propagated among the evidence nodes. The final hidden
states of the evidence nodes are then fed into an evidence aggregator to make the final
inference.

The evidence aggregator collects information from diverse evidence nodes to ob-
tain the ultimate hidden state. Within the framework, three types of aggregators are
suggested: attention aggregator, max aggregator, and mean aggregator. The attention
aggregator utilizes the claim representation to attend to the hidden states of evidence
and derive the aggregated state. The max aggregator conducts an element-wise maxi-
mum operation on the hidden states, while the mean aggregator performs an element-
wise mean operation. Once the final state is obtained, a one-layer multi-layer percep-
tron (MLP) is employed to generate the final prediction.

Figure 2.11: Claim Verification using GEAR framework [28])

To summarize, the GEAR framework addresses the issue of interdependency among
evidence sentences in claim verification. It accomplishes this by employing a sentence
encoder, constructing an evidence reasoning network for information propagation, and
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employing an evidence aggregator to obtain the final prediction. The claim verification
process using the GEAR framework is depicted in the Figure 2.11.
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Chapter 3

Proposed Methodology

In this chapter, we discuss the proposed pipeline for joint position-based gait recog-
nition system. First, we provide an overview of the overall architecture. Then we
describe each of its individual components and the reasoning behind our choices.

3.1 Overview

In order to elicit the full potential from language models when it comes to the claim
verification task, it is crucial to generate language prompts that appear organic, i.e.,
close to what a genuine English passage may seem as the models are pre-trained on
organic English texts sources such as Wikipedia. We reformulate the claim verification
task into a language generation task using prompt-tuned language models [29]. As for
the input to the model, we generated natural language prompts containing the evidence
sentences followed by the original claim and a manually selected question template
that stays the same for all the inputs. An overview of the proposed approach is given in
Figure 3.1, and detailed discussions of different prompt variations are included in the
experiment section. We evaluate the effectiveness of prompt-based methods for claim
verification in two scenarios:

3.2 Prompt Tuning for Claim Verification:

The use of “prompts” to guide language models to carry out a variety of tasks has been
on the rise [29]. Using prompts to keep the fine-tuning objective similar to pre-training
is found to be very helpful to effectively utilize linguistic knowledge from pre-trained
language models while alleviating the discrepancy between the pre-training and fine-
tuning objectives [30]. A prompt refers to a textual fragment that is inserted within
input examples, enabling the formulation of the original task as a (masked) language
modeling problem. For instance, if our objective is to classify the sentiment of the
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Figure 3.1: An overview of our proposed prompt-based fine-tuning technique for the claim
verification task. In our formulation, the evidence passage is appended with the claim posed
as a question, and followed by another question type prompt: ‘Is it True? [MASK]’. Conse-
quently, the most probable word, in this case, “Yes” is predicted to replace the masked token
to support the claim.

movie review ‘There is no need to watch this movie’, we can simply append an ad-
ditional piece of text with a blank to it and let a language model predict a suitable
word in the blank. After adding a prompt, the text may look like: ‘There is no need
to watch this movie, it was .’ A good generative language model would predict
words such as ‘bad’,‘terrible’ in place of the blank, and finally by mapping the pre-
dicted word, we can classify the original sentiment of the review. [31] Recently, the
utilization of prompts for various tasks, such as extracting factual or commonsense
reasoning from LMs has been investigated [32–35]. Nonetheless, the use of prompts
for the claim verification task is yet to be investigated. In this paper, we use cloze
questions as a means of designing prompts following the work of [36]. Moreover,
we use the masked tokens as the final outcome for a new task for prompt learning –
the claim verification task. Additionally, many recent models like GPT-3 [7] possess
a remarkable ability to retain vast amounts of information in their parameters. This
enables them to perform well even in previously unseen scenarios, making them the
preferred choice for few-shot and zero-shot scenarios. Hence, in this paper, our re-
search also focuses on evaluating the performance of the highly capable GPT-3 model
text-davinci-003 in a few-shot and zero-shot claim verification task using the HoVer
dev set and comparing its results with other models.

3.2.1 Closing the Gap between Pretraing and Finetuning?:

In the process of fine-tuning, a substantial language corpus is initially transformed
into an appropriate training task, with the prevalent approach being the utilization of a
MASKED word prediction task. In this task, a subset of words in the original corpus is
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masked by employing a distinctive token ([MASK] token), following which the model
undergoes training to anticipate a suitable word to occupy each masked position. With
the large language corpus, after sufficient epoch of training, the model is expected to
learn the latent linguistic characteristics well enough to perform different types of task.

Figure 3.2: Traditional Finetuning Process of a Language Model

The procedure is visually depicted in Figure 3.2.
But Merely relying on pretraining is insufficient for achieving satisfactory per-

formance across various downstream tasks. This is where the concept of finetuning
becomes crucial. Theoretically, we could finetune the entire pretrained model using
task-specific data from a new corpus. However, such an approach can be excessively
resource-intensive. A more elegant approach involves freezing the initial layers of the
language model, which have been empirically demonstrated to capture general linguis-
tic features, and focusing the training solely on the final few layers of the model. These
latter layers are predominantly responsible for acquiring task-specific features related
to the downstream task at hand. In our case, the task-specific dataset at at hand is claim
verification dataset. The conventional finetunig process using our dataset is depicted
in the figure 3.3.
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Figure 3.3: Finetuning Process of Language Models using Task Specific Data

The conventional approach of "pre-training and fine-tuning" exhibits a significant
disparity between the initial pre-training phase and the subsequent downstream task.
This disparity arises due to differing objectives, often necessitating the inclusion of
new parameters. For instance, an additional set of 1,024 x 2 parameters is required
to utilize a BERT-large model for binary classification. Prompts can align the down-
stream tasks with the pre-training objectives without introducing new parameters. In
the context of a classification task, let us consider the implementation of the "<text> It
is <mask>" template, where "<text>" represents the original text. The system consists
of the mappings: "positive": "great," "negative": "terrible". To demonstrate this, let
us take the sentence, "Albert Einstein was one of the greatest intellects of his time."
Initially, the sentence is enveloped within the predefined template, resulting in "Albert
Einstein was one of the greatest intellects of his time. It is <mask>". Subsequently, the
wrapped sentence undergoes tokenization and is fed into a pre-trained language model
(PLM) to predict the probability distribution across the vocabulary, specifically for the
"<mask>" token position. Ideally, the word "great" should exhibit a higher probabil-
ity than "terrible." By narrowing the gap between these two stages, the deployment
of pre-trained models for specific tasks becomes considerably simpler, particularly in
scenarios with limited training examples (few-shot). Even in the absence of training
using task-specific data, the testing set can exhibit improved accuracy, as the task is
transformed in a manner resembling the original relevant objective. This scenario is
commonly referred to as a "zero-shot" scenario, wherein the pretrained model pos-
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sesses no prior knowledge of any training sample. The process can be visualized in
Figure 3.4.

Figure 3.4: Prompt Tuning in Zero Shot Scenario

The prompt tuning paradigm proves to be particularly advantageous in scenarios
where the available training samples are limited in number. Traditionally, employ-
ing the standard finetuning approach with such a restricted dataset often falls short
of achieving a satisfactory level of accuracy. However, by introducing appropriate
prompts into the original training samples and adapting the finetuning process to a
prompt tuning setup, we can effectively enhance the accuracy, even when dealing with
a smaller set of training samples. The key to this approach lies in the strategic utiliza-
tion of prompts, which are carefully crafted instructions or queries designed to guide
the model’s response generation. By incorporating prompts that encapsulate the de-
sired behavior or context of the task, we can effectively leverage the pretrained model’s
language understanding capabilities to yield more accurate outputs. With prompt tun-
ing, the prompts act as a form of guidance that facilitates the model’s learning process
and enables it to generalize more effectively from the limited training samples. This
paradigm offers a practical and efficient solution, as it allows us to make the most of
the available data, even when it is insufficient for conventional finetuning methods. In
our specific case, tackling the task of multihop claim verification presents a formidable
challenge. Additionally, an even greater obstacle arises when attempting to construct
an appropriate dataset that encompasses the complex nature of multi-hop reasoning.
In light of these difficulties and the scarcity of suitable data, prompt tuning emerges
as an ideal alternative to address these limitations effectively.By utilizing prompt tun-
ing, we can circumvent this limitation and maximize the potential of the existing data.
Through the strategic inclusion of prompts that simulate the multi-hop reasoning pro-
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cess, we can effectively train the model to handle the complexities of the task, even
with limited training examples. The process of finetuning with fewer training samples
is described in the figure 3.5.

Figure 3.5: Prompt Tuning in Few Shot Scenario

Fine-tuning the pre-trained models and task-specific parameters becomes challeng-
ing under such circumstances. However, the implementation of prompting significantly
streamlines this process. Recent research conducted by [37] suggests that a prompt can
be as valuable as 100 conventional data points, emphasizing the substantial potential
of prompts to enhance sample efficiency. Prompt research has given rise to two distinct
paradigms, each presenting unique perspectives. Prompt-based fine-tuning, inspired by
the PET papers [36], is considered a viable method for improving few-shot learning in
smaller language models, typically encompassing millions of parameters, as opposed
to the billions found in models like BERT or RoBERTa. In contrast, due to its difficulty
and cost, fine-tuning poses challenges for super-large models such as the 175B GPT-3
and 11B T5 [20]. In such cases, it is more practical to maintain fixed model parameters
and utilize different prompts for different tasks.

3.2.2 Openprompt Framework:

OpenPrompt is a comprehensive open-source library and framework designed to fa-
cilitate the seamless implementation of prompting techniques in natural language pro-
cessing (NLP) tasks. It serves as a unified platform, catering to the needs of both
researchers and practitioners, enabling them to experiment with and effectively apply
prompts across various NLP models and applications.

The core of OpenPrompt revolves around a flexible and modular architecture that
empowers users to define and customize prompts according to their specific require-
ments. The library supports different prompt formats, including text templates, cloze-
style prompts, and masked language modeling prompts. This versatility allows users
to adapt prompts to various NLP tasks, such as text classification, named entity recog-
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nition, question answering, and machine translation.
The critical components of OpenPrompt include:
1. Templates: The template module is central to prompt learning. It wraps the

original text with textual or soft-encoding templates. Templates typically consist of
contextual and masked tokens (textual or soft). In OpenPrompt, all templates inherit
from a standard base class with universal attributes and abstract methods. To enhance
practical usability and minimize the learning cost, OpenPrompt employs a template
language inspired by the dictionary grammar of Python. This design ensures flexibility
and clarity, enabling users to construct various prompts easily.

Figure 3.6: The overall architecture of OpenPrompt Framework

2. Verbalizers: In prompt-based classification, a verbalizer class is constructed to
map original labels to label words in the vocabulary. When a pre-trained language
model (PLM) predicts a probability distribution over the vocabulary for a masked
position, a verbalizer extracts the logits of label words and integrates them into the
corresponding class, thereby facilitating loss calculation. OpenPrompt provides a sim-
ple way to define binary sentiment classification verbalizers, as depicted in Figure ??.
Like templates, all verbalizer classes inherit from a standard base class with necessary
attributes and abstract methods. In addition to manually-defined verbalizers, Open-
Prompt implements automatic verbalizers such as AutomaticVerbalizer and Knowl-
edgeableVerbalizer [38]. Furthermore, essential operations like calibrations [39] are
also realized within OpenPrompt.

3. PromptModel: OpenPrompt utilizes a PromptModel object to handle training
and inference tasks. This object comprises a PLM, a Template object, and an optional
Verbalizer object. Users can flexibly combine these modules and define advanced in-
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teractions among them. The base class implements a model-agnostic forward method,
allowing users to "predict words for positions that need to be predicted" without spe-
cific head implementations for different PLMs. This approach ensures a unified API
for prompt prediction across various pre-training objectives.

4. Training: From a parameter training perspective, prompt learning in Open-
Prompt can be divided into two strategies. The first strategy simultaneously fine-tunes
both the prompts and the PLM, which has been proven effective in low-data regimes.
OpenPrompt also provides a FewshotSampler to support few-shot learning scenarios.
The second strategy involves training only the prompt parameters while keeping the
PLM frozen. This approach is considered a parameter-efficient tuning method and
holds promise for optimizing super-large PLMs. OpenPrompt’s trainer modules imple-
ment the training process, incorporating prompt-oriented training techniques, such as
an ensemble of templates. Moreover, OpenPrompt supports experimentation through
configuration, allowing for large-scale empirical studies. The library provides compre-
hensive tutorials that cover the usage of basic and advanced attributes in OpenPrompt.

In summary, OpenPrompt offers researchers and practitioners a powerful toolkit for
prompt-based NLP tasks. Its flexible architecture, support for various prompt formats,
and integration with pre-trained language models enable efficient, prompt implemen-
tation and experimentation. Through OpenPrompt, users can explore and harness the
potential of prompts to enhance model performance, efficiency, and transfer learning
in diverse NLP applications.

3.2.3 Supervised Fine-Tuning Scenarios:

For this experiment, we utilized the T5 model, which is a pre-trained prompt-based
language model that leverages in-domain fine-tuning on the training set of claim ver-
ification datasets. We employ the OpenPrompt1 [40] framework in conjunction with
the prompt-based PLM: T5 [20]. The OpenPrompt framework utilizes hand-crafted
templates and label words to provide a probability distribution over the vocabulary for
each masked position. Next, the probability logits only for the label words are mapped
back to their original classes via the OpenPrompt verbalizer in an automated fashion.
In this paper, we use several variants of the T5 [20] model (T5-base and T5-large) to
conduct our experiments. T5 is a transformer-based model that identifies each task
as a sequence-to-sequence problem, as opposed to the traditional BERT like language
models [19, 41, 42] that assign a class label to the input text. With different training
objectives, the model is pre-trained on a large corpus and fine-tuned on task-specific
inputs in order to produce the required outputs. In our case study, the training of T5

1https://github.com/thunlp/OpenPrompt
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and its variants required us to adapt the OpenPrompt [40] framework with a variety of
different label words and templates.

3.2.4 Zero-Shot Learning Scenarios:

We used one of OpenAI’s most advanced generative model, the text-davinci-003,
to evaluate the effectiveness of prompt-based methods in zero-shot scenarios. We
structured an input prompt by combining evidence sentences, a claim, and a question
asking whether the claim is supported by the context or not. Since the text-davinci-003
model is a generative model that tends to provide detailed responses, we manually
evaluated its responses and categorized them as either “SUPPORTED” or “NOT SUP-
PORTED”. For example, upon providing an input prompt as: ‘Context: Universities

and university colleges normally use the ECTS grading scale. The ECTS grading scale

is a grading system defined in the European Credit Transfer and Accumulation System

(ECTS) framework by the European Commission. Claim: North America countries

utilize the ECTS grading scale that Norway adopted. Is the claim supported or not

supported according to the context?’, the model text-davinci-003 generated the
following response: ‘Not supported. The context does not mention any North American

countries utilizing the ECTS grading scale that Norway adopted.’ From this response,
it is evident that the claim should belong to “NOT SUPPORTED” class.

3.2.5 Multitasking Ability of Prompt Tuned Models:

The traditional finetuning strategy has a significant drawback when it comes to mul-
titasking capabilities. In this approach, pretrained language models need to be indi-
vidually finetuned for specific tasks, and the knowledge gained from one task does
not transfer effectively to other downstream tasks. However, prompt tuning introduces
a paradigm shift by allowing us to overcome this limitation. In prompt tuning, the
concept of converting any task into a common task similar to the original training ob-
jective becomes pivotal. By leveraging this approach, we can finetune a pretrained lan-
guage model using the training dataset of one task and effectively apply the knowledge
gained to another task. This newfound flexibility and convenience unlock the potential
for streamlining the use of a single-core model across various tasks. With prompt tun-
ing, the traditional barriers between tasks are significantly reduced. Previously, each
task required its own specialized finetuning process, which was time-consuming and
computationally intensive. However, in prompt tuning, the training dataset of one task
can serve as a foundation for finetuning the model, enabling it to capture the essential
patterns and features necessary for that particular task. This knowledge can then be

32



carried over and utilized in subsequent tasks, eliminating the need for separate finetun-
ing steps for each specific task.

In summary, prompt tuning revolutionizes the finetuning process by enabling the
conversion of any task into a common task similar to the original training objective.
This breakthrough facilitates the transfer of knowledge across tasks, allowing us to use
a single core model for multiple tasks efficiently. With prompt tuning, the barriers to
multitasking are significantly reduced, leading to enhanced productivity and knowl-
edge sharing in the field of natural language processing and beyond.

We conducted experiments in the field of claim verification, specifically focusing
on two benchmark datasets as mentioned earlier. One dataset consisted of single hop
factual claims, while the other included multihop factual claims. By exploring vari-
ous combinations, we aimed to empirically demonstrate that models finetuned using
language prompts from one dataset performed better on a combined test set, which
included both single and multihop samples, compared to models finetuned without
language prompts. The process is described in the figure 3.7 and the detailed result is
described in the chapter 4.

Figure 3.7: Prompt Tuned Model is a better Multitasking Model
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Chapter 4

Results and Discussion

4.1 Datasets

In this paper, we particularly leverage the only two benchmark claim verification
datasets that are well renowned, namely FEVER and HoVer. Since these in FEVER,
there are 185445 claims, the vast majority of which just include a single sentence pro-
viding evidence. It is an opensourced dataset first introduced in FEVER shared task for
fact extraction and claim verification from wikipedia articles [2].1 Table 4.1 displays
the full statistics of this dataset.

Split SUPPORTED REFUTED NOT ENOUGH INFO
Train 80035 29775 35639
Test 3333 3333 3333
Dev 3333 3333 3333

Reserved 6666 6666 6666

Table 4.1: FEVER dataset split for SUPPORTED, REFUTED, NOT ENOUGH INFO classes

On the other hand, HoVer is made up of substantially fewer samples than FEVER,
about nine times fewer, but each of the claims has multiple relevant sentences sourced
from different documents that serve as evidence. It was first introduced by [4] for the
multihop claim verification task. The detailed breakdown of this dataset is provided in
Table 4.2.

Split SUPPORTED NOT-SUPPORTED
Train 11023 7148
Dev 2000 2000
Test 2000 2000

Table 4.2: HoVer dataset split for SUPPORTED and NOT SUPPORTED classes

1The reserved set mentioned in the Table 4.1 is used as a blind test set for the original FEVER shared
task.
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4.1.1 Combined Train and Dev Set Creation

To measure the performance of our approaches in a cross-domain setup, we utilized
a combined training dataset and tested the performance of the prompt-tuned and non-
prompt tuned models on a combined dev set. Both of these combined versions con-
tain data samples from two separate datasets, i.e., HoVer [4] and FEVER [2]. But
the FEVER dataset contains three different labels: ‘SUPPORTED’, ‘REFUTED’, and
‘NOT ENOUGH INFO’, while the HoVer dataset contains only two labels: ‘SUP-
PORTED’ and ‘NOT SUPPORTED’. For our experiments, from the FEVER dataset,
we discarded all the data samples labeled ‘NOT ENOUGH INFO’ since they do not
provide any gold evidence sentence. As for the remaining two types of samples, we
considered the ‘REFUTED’ label equivalent to the ‘NOT SUPPORTED’ label from
HoVer, and data samples labeled as ‘SUPPORTED’ in both datasets have been consid-
ered equivalent. The combined dev set contains a total of 15001 samples, whereas the
combined training set has 120549 data samples.

The development sets of Hover and FEVER were combined with the intention of
testing the robustness of the fine-tuned models on a situation that was more repre-
sentative of the real world, in which claims often require both single and multi-hop
reasoning for verification.

4.2 Experimental Setup

In our supervised learning experiments, we have used 0.00001 as the learning rate.
Experiments were run on Google Colab with an Nvidia A100 GPU and locally using an
Nvidia RTX 3090 GPU. We did not run more than 5 epochs in any of our experiments.

For the Zero-Shot evaluation, since the text-davinci-003 model gives gen-
erative output, we manually compare its generated response with the gold label to
measure the accuracy.

Throughout our evaluation, we have utilized accuracy as the primary metric. The
balanced nature of our dataset, where both classes (SUPPORTED and NOT SUP-
PORTED) hold equal importance, makes accuracy an appropriate and reliable mea-
sure. Additionally, considering that other baselines have also used accuracy as their
metric, using the same evaluation metric enables a meaningful comparison between
our work and theirs.
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Model Accuracy
BERT + Oracle [4] 81.20
Prompt Learning with T5-large 83.89

Table 4.3: Comparison of Performance on the HoVer Dev Set

4.3 Discussions

Since our focus is the more challenging claim verification task, the multi-hop claim
verification, we primarily use the HoVer development set to evaluate the performance
of our proposed prompt learning models. Below, we first describe the performance
based on our prompt-based models that leverage supervised fine-tuning, followed by
the zero-shot prompt-based models. Finally, we conduct some error analyses to further
evaluate the performance of prompt learning for claim verification.

4.3.1 Performance based on Supervised Fine-Tuning

For supervised fine-tuning scenarios: (i) we evaluate the performance of our proposed
approach on the HoVer development set by comparing it with other baselines (BERT,
DistilBERT) that did not leverage prompt learning, (ii) we conduct experiments to
evaluate the cross-domain generalization performance of our proposed approach via
combining the development set of HoVer and FEVER, (iii) we train our model for
few-shot learning with randomly re-sampled training sets of the following sizes {64,
128, 256, 512, 1024}, similar to the settings of Seoh et al. [10], (iv) finally, we evaluate
the performance based on prompt variations.

(i) Prompt-tuning outperforms traditional fine-tuning. Here, we first discuss
our findings in the original claim verification task. Our experimental results are shown
in Table 4.3. According to the table, it is evident that our prompt-based method per-
forms considerably better than the no-prompt-based baselines. In comparison to the
baseline BERT model that achieved 81.20% accuracy [4], we are able to obtain 83.89%
accuracy when evaluated on the HoVer dev set2 using the T5-large model fine-tuned
on the HoVer training set using our prompt learning setup, outperforming the baseline
by 2.69%.

(ii) Prompt-tuning can achieve better cross domain generalization. Here, we
present our findings based on cross-domain generalization performance of our pro-
posed method. For that purpose, we combine the development sets of HoVer and
FEVER together and compare the performance of the prompt-based T5-large model

2We evaluated our models performance on the dev set because it contains the original gold evidence
from the dataset whereas test set does not provide any gold evidence sentence.
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Training Dataset Models
BERT DistilBERT T5

HoVer 61.09 73.02 86.76
FEVER 70.95 74.56 77.36
HoVer + FEVER 73.13 78.24 82.30

Table 4.4: Comparison of Performance in Cross-Domain Generalization. To evaluate the mod-
els’ performance, we combined the development set of HoVer and FEVER.

with BERT and DistilBERT. We train these models in different training dataset set-
tings, as shown in Table 4.4. We observe based on our experiments that prompt-based
language model demonstrates better cross-domain generalizability in the combined de-
velopment set3 of both single-hop and multi-hop evidence reasoning.

In all three cases, the prompt-based model showed superior performance over tradi-
tional transformer encoder-based models, i.e., BERT and DistilBERT. One interesting
pattern that can be observed from Table 4.4 is that, in the case of encoder-based mod-
els (BERT/DistilBERT), the performance improves with more training samples, hence
achieving the highest accuracy when fine-tuned with the combined train set (HoVer
+ FEVER). Both these models achieve the second highest accuracy when finetuned
with only FEVER dataset, and the lowest accuracy with HoVer train set as it contains
the fewest training samples. However, in case of encoder-decoder-based model T5,
the pattern is not the same. For the prompt-based T5 model, HoVer is proved to be a
superior training resource, as it includes multiple contexts per claim. This large pool
of context allows the T5 model to perform well in the combined dev set, whereas the
performance of the model deteriorates when fine-tuned with only the FEVER dataset
due to its limited number of evidence sentences to learn from. Meanwhile, one inter-
esting finding is that combining the training data with both HoVer and Fever makes the
model perform worse in the combined development set in comparison to the scenario
when the model was only trained on HoVer dataset. This gives a strong indication that
the prompt-based models suffers when datasets with fewer context to train from are
used, whereas datasets with multiple contexts helps the prompt-based models (T5 in
our case) perform better in the claim verification task.

(iii) Prompt-tuning is better for few-shot learning. Here, we present our ex-
perimental findings on the following few-shot learning scenarios: 64-shot, 128-shot,
256-shot, 512-shot, and 1024-shot scenarios. As evident from Table 4.5, there is a
noticeable gap in the learning capacities of non-prompt-based baseline models in few-
shot conditions when compared to prompt-based models. We observe that prompt-
based methods (T5-base and T5-large) acquire an average of 3% accuracy gain using

3The detailed discussion of the combined dev set is provided in Dataset
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Number of Training Samples

Model 64 128 256 512 1024
Acc Acc Acc Acc Acc

BERT 49.79 50.24 49.64 50.65 51.77
DistilBERT 49.96 50.56 50.56 51.98 54.76
T5-base 52.01 53.75 58.39 58.93 69.81
T5-large 52.38 52.97 53.29 62.07 70.70

Table 4.5: Comparisons of Performance in terms of Few-Shot Learning. Acc refers to accuracy.
We used three random seeds for each of the experiments and averaged their scores.

Template Accuracy
Context: {Evidence} Claim:
{Claim}? Does the context pro-
vide enough evidence to support
the claim fully? [MASK].

81.60

Context: {Evidence} Claim:
{Claim} Is the claim supported
according to the context? [MASK].

83.33

Evidence: {Evidence} Question:
{Claim}? Is it true?[MASK].

83.50

{Evidence} Question: {Claim}? Is
it true?[MASK].

83.80

Question:{Claim}? Is it true ac-
cording to the context? Context:
{Evidence} Question type: Yes-No.
[MASK].

83.89

Table 4.6: Performance based on different Language Prompts used in T5-large model

fewer training examples (although increasing the number of training samples also re-
sults in an even greater accuracy gain compared to traditional fine-tuning procedure).
Moreover, while taking into account the whole dataset, we only used 5.6% (1024-shot)
of the training set at most and yet we were able to achieve a competitive accuracy with
the prompt-based fine-tuning strategy.

(iv) Different prompts yield different results. We experimented with several
manually curated language prompts for the claim verification task where we concate-
nate the evidence passage with the claim. Some of our manually curated prompt tem-
plates and the accuracy gained by our best performing T5-large model when fine-tuned
and tested using those prompts are listed in Table 4.6.

Note that in Table 4.6, we denote {Claim} to be the substitute for the claim state-
ment and {Evidence} is set to be the placeholder for all of the evidence sentences
concatenated together as a passage. Moreover, [Mask] refers to the label word that
the PLM will predict, and it is essential that a set of label words mapped to individual
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Model Accuracy
BERT-base 49.80
BERT-large 50.20
DistilBERT-base 50.20
T5-base 49.90
T5-large 49.90
text-davinci-003 60.48

Table 4.7: Comparison of Zero-Shot Performance on the HoVer Dev Set

classes be specified beforehand. We experimented with a different set of label words
(e.g., labels) for each class. For example, words like ‘yes’,‘correct’,‘supported’,‘possible’

can be selected as label words for the SUPPORTED class and ‘no’,‘incorrect’,‘not

supported’,‘impossible’, etc., for the NOT SUPPORTED class. It is impor-
tant to note that even minor alterations to the template affect the accuracy too, indi-
cating that language prompts can be tailored to specific scenarios. Our experiments
revealed that the model achieved the highest accuracy when the template was struc-
tured as a question (i.e., the last example in Table 4.6).

4.3.2 Performance based on Zero-Shot Learning

We conducted zero shot evaluation on the HoVer dev set using text-davinci-003.
From our experiments (see Table 4.7), it is evident that text-davinci-003 per-
forms the best in the zero-shot setting. Though text-davinci-003 obtains much
lower accuracy than the supervised fine-tuned models with prompts (as we observed
in Table 4.3), it outperforms the similar models (e.g., BERT, T5) by a large margin in
zero-shot scenarios (see Table 4.7).

4.3.3 Label Word Probing

One important question occur when we think about why prompt tuning on T5 works
better than BERT and what exactly we are doing different. Also, how is it fundamen-
tatly different than classification tasks? We followed the method described in [43] We

Positive Class Negative Class Accuracy
Baseline supported not supported 83.89
Reverse not supported supported 77.4
Antonyms Hot Cold 78.9
Related Words Apple Orange 79.74
Unrelated Words Hot Orange 79.14

Table 4.8: Results on the Dev Set with Varying Label Words
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believe that these two issues are intricately related. Specifically, when answering the
second query, both neural models play a crucial role in acquiring latent representations
that are relevant to the given task, veracity classification. This method entails beginning
with a model that has been pretrained and then mapping these latent representations
into task-specific decisions. Therefore, the overall performance of the end-to-end task
is dependent on a combination of the knowledge imparted during pretraining, which is
already present, and the knowledge acquired through fine-tuning on task-specific data.
In the classification-based approach employing BERT, the end-to-end model relies on
a single fully-connected layer to facilitate the mapping of the latent representation (de-
rived from the [CLS] token) into the required binary decision. While this method can
utilize pretrained knowledge during the process of fine-tuning the latent representa-
tions, the final mapping, i.e. the fully-connected layer, must be learned fresh because
it is initialized arbitrarily.

T5, on the other hand, can utilize both pretrained and fine-tuned knowledge in
order to learn the appropriate task-specific latent representations and the mapping to
relevance decisions. T5 can exploit the portion of the network responsible for generat-
ing output, unlike the fully-connected layer in the classification-based approach. This
neural architecture contains dormant knowledge of semantics, linguistic relations, and
other characteristics required to generate coherent text. In other words, T5 has access
to an additional source of information that BERT does not. In order to verify this the-
ory in the claim verification task, we have experimented with varying label words and
monitored the overall accuracy gained on the dev set. It can be observed that, vary-
ing label words indeed affects the accuracy and we gain the highest percentage when
finetuned with a more suitable words. And if we change the label words to irrelevant
order, the accuracy drops. The accuracy drops and gains are detailed in the table 4.8.
We conducted experiments using the following variants for comparison:

• "Reverse": In this variant, "not supported" indicates a supported claim and
"supported" indicates a claim that is not supported. By doing so, we intended
to determine whether or not the model relied on latent knowledge regarding lin-
guistic relationships. If the model did indeed exploit such knowledge, we hy-
pothesized that compelling it to make opposite associations on the same polarity
scale would reduce its efficacy relative to the baseline.

• "Antonyms": Here, we mapped a supported claim to the term "hot" and an
unsupported claim to the term "cold." This mapping maintained the use of ad-
jectives at opposite extremes of a polarity scale; however, the polarity scale itself
had no relevance. We anticipated the model’s efficacy to be lower than the base-
line if it were genuinely utilizing latent knowledge.
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• "Related Words":In this variant, we designated the term "apple" to a supported
claim and the term "orange" to a claim that is not supported. Despite the fact
that these words were semantically related, they lacked the polarity contrast of
the previous variants. As a result, we anticipated that the efficacy would be
inferior to the baseline.

• "Unrelated Words": For this variant, we associated the term "hot" with a sup-
ported claim and a wholly unrelated term, "orange," with a claim that is not
supported. Thus, we forced the model to generate an arbitrary semantic map-
ping. We anticipated that the performance would be inferior to both the baseline
and the use of related terms.

4.3.4 Error Analysis

In this section, we conduct some error analyses of our proposed prompt-based ap-
proaches (fine-tuned and zero-shot) for the claim verification task. Below, we dis-
cussed the errors produced by these models.

(i) Error analysis of the best performing fine-tuned model: The supervised T5-
large model, which achieved the highest accuracy when fine-tuned on the training set,
encounters difficulties and tends to generate incorrect outputs in some complex situ-
ations. Some of these failures are exemplified in Table 4.9. In Sample 1, the model
failed to determine which individual died first, given their respective lifespans. A po-
tential failure point in this instance may be the notation used to indicate the authors’
lifespans in the example. As the lifespan notation may vary in various example sce-
narios, it is challenging for the models to determine the correct response for this type
of examples. In Sample 4, the model was unable to perform a comparison between
two numbers, indicating its inability to make mathematical inferences. In Sample 5,
the model faced challenges in making a long reasoning connection between two dis-
tantly mentioned named entities in a passage. Similarly, in Samples 3 and 4, a complex
causal reasoning chain was required to be understood between multiple named entities,
which the model struggled to comprehend.

(ii) Error analysis of the best performing zero-shot model: We picked a subset
of cases in which the best performing zero-shot model text-davinci-003 model
failed to classify the claims correctly and carried out an investigation into those cases.
We presented the error analysis in Table 4.10 that contains five examples where the
model was unable to correctly predict the accurate class. In samples 3 and 4, mathe-
matical reasoning was needed to correctly identify the veracity of the given claim, and
clearly text-davinci-003 model failed in this case. Furthermore, the model was
unable to categorize the gold labels in Samples 1 and 2, since doing so would have
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necessitated the use of a sophisticated multi-hop reasoning procedure to validate the
claims’ authenticity. As for the final example in Table 4.10, in addition to two-hop
reasoning, it was needed to correctly infer between named entities and their respective
pronouns, which proved to be challenging for the model.
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# Claim and Evidence Gold
Label

Predicted
Label

1 Claim: Vladimir Igorevich Arnold died after Georg Cantor. S NS
Evidence: Georg Ferdinand Ludwig Philipp Cantor ( March
3 (O.S. February 19) 1845 – January 6, 1918) was a German
mathematician. Vladimir Igorevich Arnold (alternative spelling
Arnol’d, 12 June 1937 – 3 June 2010) was a Soviet and Russian
mathematician.

2 Claim: Barton Mine was halted by a natural disaster not Cam-
laren Mine.

S NS

Evidence: Barton Mine, also known as Net Lake Mine, is an
abandoned surface and underground mine in Northeastern On-
tario, Canada. Conditions attributed to World War II halted de-
velopment at Camlaren in 1939. Barton was the site of a fire in
the early 1900s, after which it never had active mining again.

3 Claim: The product lithium-ion tank is being built at a 107,000
acre industrial park for Tesla Motors.

S NS

Evidence: The Gigafactory 1 is being built there to serve Tesla
Motors and Panasonic. The Tahoe Reno Industrial Center (TRI
Center, or TRIC) is a privately owned 107,000 acre industrial
park, located at Interstate 80 next to Clark, Storey County,
Nevada. The Tesla Gigafactory 1 is an operational lithium-ion
battery factory under construction, primarily for Tesla Inc., at the
Tahoe Reno Industrial Center (TRIC) in Storey County (near the
Community of Clark, Nevada, US).

4 Claim: The operas Vanessa and Le roi malgré lui contain differ-
ent number of acts.

NS S

Evidence: Le roi malgré lui ("King in Spite of Himself" or "The
reluctant king") is an opéra-comique in three acts by Emmanuel
Chabrier of 1887 with an original libretto by Emile de Najac and
Paul Burani. Vanessa is an American opera in three (originally
four) acts by Samuel Barber, opus 32, with an original English
libretto by Gian-Carlo Menotti.

5 Claim: William McGrath was a loyalist from Northern Ireland,
but was known for being in favor of a united Ireland.

NS S

Evidence: William McGrath was a loyalist from Northern Ire-
land who founded the far-right organisation Tara in the 1960s,
having also been prominent in the Orange Order until his ex-
pulsion due to his paedophilia. Like unionists, loyalists are at-
tached to the British monarchy, support the continued existence
of Northern Ireland, and oppose a united Ireland.

Table 4.9: Sample Cases of misclassification made by T5 model. Here NS and S stand for
NOT SUPPORTED class and SUPPORTED class respectively.
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# Claim and Evidence Gold
Label

Predicted
Label

1 Claim: Happily was co-written and sang by the One Direction
band member who got his debut as a singer for the band, White
Eskimo.

NS S

Evidence: It was co-written by band member Harry Styles. He
made his debut as a singer with his band White Eskimo, who
performed locally in Holmes Chapel, Cheshire.

2 Claim: William Zabka, who was born on October 21, 1965, ap-
peared in the 2014 American drama film Where Hope Grows.

NS S

Evidence: The film stars David DeSanctis, Danica McKellar,
Kerr Smith, Brooke Burns, William Zabka, Kristoffer Polaha
and McKaley Miller. William Michael Zabka (born October 21,
1965) is an American actor, screenwriter, director and producer.

3 Claim: Erich Schmidt-Leichner was the defense counsel of a
German citizen who underwent Catholic exorcism rites during
the year before her death.

NS S

Evidence: Erich Schmidt-Leichner (14 October 1910 – 17 March
1983) was a German lawyer who made a name as a distinguished
defense counsel at the Nuremberg Trials (1945 - 1946). In 1978,
he was a defense counsel in the "Klingenberg Case" (Anneliese
Michel), where a married couple were accused of negligent homi-
cide for failing to call a medical doctor during an exorcism of
their daughter. Anneliese Michel (21 September 1952 – 1 July
1976) was a German woman who underwent Catholic exorcism
rites during the year before her death.

4 Claim: The writer of the novel "Horizon" is American. They are
younger than the author of "Dubin’s Lives".

S NS

Evidence: Bernard Malamud (April 26, 1914 – March 18, 1986)
was an American novelist and short story writer. Lois McMaster
Bujold ( ; born November 2, 1949) is an American speculative
fiction writer. Dubin’s Lives is the seventh published novel by the
American writer Bernard Malamud.Horizon is a fantasy novel by
American writer Lois McMaster Bujold.

5 Claim: The author of Anastasia on Her Own won the 2002 Rhode
Island Children’s Book Award.

S NS

Evidence: Anastasia on Her Own (1985) is a young-adult novel
by Lois Lowry. Her book "Gooney Bird Greene" won the 2002
Rhode Island Children’s Book Award.

Table 4.10: Sample Cases of misclassification made by the text-davinci-003 model.
Here NS and S stand for NOT SUPPORTED class and SUPPORTED class respectively.
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Chapter 5

Conclusion

5.1 Summary

In this comprehensive dissertation, we present a groundbreaking approach that lever-
ages prompt-based language models to tackle the challenging task of claim verification.
Our aim was to explore the potential benefits of incorporating language prompts of
high quality into the existing framework and to investigate how they could enhance the
performance of language models in handling multi-hop claim verification problems.
Through extensive experiments, we evaluated our approach and found that incorporat-
ing carefully designed language prompts as additional input information significantly
improved the performance of language models, particularly in the complex domain of
multi-hop claim verification. Furthermore, Our prompt-based methods were rigorously
tested and validated in diverse scenarios, including few-shot learning, cross-domain
generalization, and zero-shot learning, demonstrating superior accuracy compared to
conventional approaches and highlighting the robustness and versatility of prompt-
based language models in handling various data availability and domain adaptation
challenges. We also explored the potential of prompt-based generative decoder-based
language models, specifically the highly capable text-davinci-003 model. We
discovered promising opportunities for utilizing generative large language models in
claim verification research by analyzing the generated responses and their alignment
with the prompts. Within the scope of our investigation, we also aimed to find a list
of the best language prompts. Through meticulous analysis and experimentation, we
successfully filtered out the top-performing prompts. This curated list provides valu-
able insights into the optimal use of prompts and is a practical resource for researchers
and practitioners working in claim verification. Furthermore, our exploration extended
beyond prompts to encompass the impact of label words in the generated texts. We
conducted empirical analyses to investigate how the choice of label words influences
the model’s performance when mapping them to specific class labels. Our findings
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revealed that attempting to map irrelevant words to specific class labels drastically
decreased the model’s performance. This emphasizes the importance of careful con-
sideration when selecting appropriate label words for accurate classification within the
claim verification framework. Overall, Our dissertation highlights the effectiveness of
prompt-based language models in claim verification and their potential for advancing
natural language understanding and information verification.

5.2 Future Works

In future endeavors, our work can be extended to tackle the more challenging task
of claim validation using extracted evidence sentences obtained from a retrieval sys-
tem i.e. the system will be robust enough to automatically extract evidences from a
large corpus and providing filtered evidence sentences will no longer be necessary.
Additionally, we aim to explore the impact of domain adaptation [44] and transfer
learning [45] from answer selection models [46–48] on overall performance, thereby
enhancing the versatility of our approach. Although in this study, we successfully
employed manually generated language prompts, we acknowledge that this manual
process can be laborious and complex in different scenarios. Therefore, an intriguing
direction for future research would involve developing an automated system capable
of generating suitable language prompts that can match the effectiveness of expert-
designed prompts. Additionaly, In this dissertation, we focused on a specific evaluation
metric used by all the baselines. However, for future research, it would be valuable to
explore additional evaluation metrics, such as the Precision, Reacall and F1 measure,
to conduct a comprehensive analysis and determine if the current evaluation is suffi-
cient or requires further investigation. Furthermore, expanding our analysis, we intend
to investigate the effect of prompt length on model accuracy and scalability. By con-
ducting in-depth research, we aim to identify an optimal trade-off that balances prompt
length with performance. This analysis will provide valuable insights into the impact
of prompt size on the overall efficiency and effectiveness of claim verification mod-
els. By venturing into these future research directions, we seek to advance the field of
claim validation and further optimize the performance of language models. Through
automated prompt generation and a thorough analysis of prompt length, we aspire to
enhance the efficiency, and accuracy of claim verification systems in various real-world
applications.
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