

ISLAMIC UNIVERSITY OF TECHNOLOGY DHAKA, BANGLADESH ORGANIZATION OF ISLAMIC COOPERATION



# POTENTIAL OF RAINWATER HARVESTING IN IUT CAMPUS

BY

Zubair Siam (ID-180051221)

Rafsan Habib (ID-180051226)

A Thesis Submitted in Partial Fulfillment of the Requirements for the degree

of

**BACHELOR OF SCIENCE IN CIVIL ENGINEERING** 

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT)

June 2023

# **Potential of Rainwater**

# Harvesting in IUT Campus

# A Thesis by

Name of the Student

ZUBAIR SIAM RAFSAN HABIB Student ID

180051221 180051226

Supervisor:

# **DR. MD. REZAUL KARIM**

Professor

Submitted to the

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

### (CEE)

## ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT)

June 2023

# **DECLARATION OF CANDIDATES**

We hereby declare that the project/thesis work under the supervision of Dr. Md. Rezaul Karim entitled "Potential of Rainwater Harvesting in IUT Campus ", has been performed by us and this work has not been submitted elsewhere for reward of any degree or diploma.

Zubair Siam Student ID: 180051221

Rafsan Habib Student ID: 180051226

June 06, 2023

### **APPROVAL OF SUPERVISOR**

This is to certify that the project/thesis submitted by Zubair Siam (180051221) and Rafsan Habib (180051226) have been found satisfactory and accepted as partial fulfilment of the requirement for the degree of Bachelor of Science in Civil Engineering.

#### SUPERVISOR

#### DR. Md. Rezaul Karim

Professor

Department of Civil and Environmental Engineering (CEE)

Islamic University of Technology (IUT)

A subsidiary Organ of the

Organization of Islamic Cooperation (OIC)

Board Bazar, Gazipur, Bangladesh

June 07, 2023

# ABSTRACT

The exploration of alternate water sources and sustainable water management techniques is necessary due to the lack of available water and the rising demand for freshwater resources. A practical approach to increase water supply, ease pressure on current water sources, and encourage water conservation is rainwater harvesting (RWH). In evaluating the overall potential as a sustainable water management strategy, this thesis identifies how well it may work in a university environment.

The study starts off by looking at the patterns of water demand and usage on the university campus covering both the indoor and the outdoor water uses. For determining the possible availability of rainwater the information on local climate and rainfall patterns is gathered and reviewed. In order to determine which rainwater collecting techniques are best fit for the university's infrastructure and needs, a variety of methods including rooftop collection systems, surface runoff capture, and subterranean storage are studied. Then an equation based model was develop using catchment area, coefficient of runoff and rainfall intensity from which daily runoff was calculated. Rstudio was used for data assessing, finding trends and seasonal variations.

Examined as well are the environmental effects of rainwater collection, such as a decrease in the need for energy-intensive water treatment procedures and less stress on underground water supply.

From October to March that is in the dry season, the amount of supplementation ranges from 0.5% to 9% of the total water demand. In April and May it is close to 10-15%, whereas in August and September it is close to 20%. The most supplementation that can be achieved is in the months of June-July in which up to 25% of the total daily water demand can be supplemented.

The results of this study provide valuable insight on the possibilities of rainwater collection as a long-term water-management strategy for IUT. The findings support efforts to conserve water and encourage sustainable practices among campus residents by helping to develop guidelines and recommendations for the implementation of rainwater harvesting systems that take into account the unique qualities and needs of the university.

# **ACKNOWLEDGEMENTS**

We would like to begin by expressing our deepest appreciation to Almighty Allah for enabling us to finish this research and finish the project and thesis.

We are highly indebted to the supervisor of our project/thesis, Dr. Md. Rezaul Karim, Professor, Department of Civil and Environmental Engineering (CEE), Islamic University of Technology (IUT), Bangladesh, who has helped us with his invaluable time for discussion, continuous advice and guidance for preparation and completion of this project/thesis.

We want to give thanks, to the office staffs and workers of Islamic University of Technology (IUT), Bangladesh, for giving us relevant required information regarding our thesis.

We also like to extend our sincere appreciation to the other professors from the Department of Civil and Environmental Engineering (CEE), Islamic University of Technology (IUT), Bangladesh, who contributed via their essential suggestions.

# **Table of Contents**

| LIST OF FIGURES                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LIST OF TABLES                                                                                                                                                                                                                                                                 |
| CHAPTER I 1                                                                                                                                                                                                                                                                    |
| INTRODUCTION                                                                                                                                                                                                                                                                   |
| 1.1 About Rainwater Harvesting:                                                                                                                                                                                                                                                |
| 1.2 Water supply system of IUT:                                                                                                                                                                                                                                                |
| 1.3 Study Area:                                                                                                                                                                                                                                                                |
| 1.4 Problem Definition:                                                                                                                                                                                                                                                        |
| 1.5 Objective:                                                                                                                                                                                                                                                                 |
| CHAPTER II                                                                                                                                                                                                                                                                     |
| LITERATURE REVIEW                                                                                                                                                                                                                                                              |
| 2.1 Water Scarcity and Sustainability:                                                                                                                                                                                                                                         |
| 2.2 Rainwater Harvesting Systems:                                                                                                                                                                                                                                              |
| 2.3 Case Studies and Best Practices:                                                                                                                                                                                                                                           |
| 2.4 Institutional Policies and Regulations:                                                                                                                                                                                                                                    |
| 2.5 Environmental and Educational Benefits:                                                                                                                                                                                                                                    |
| CHAPTER III                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                |
| Methodology                                                                                                                                                                                                                                                                    |
| Methodology       10         3.1 Introduction       10                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                |
| 3.1 Introduction                                                                                                                                                                                                                                                               |
| 3.1 Introduction       10         3.2 Data Collection       10                                                                                                                                                                                                                 |
| 3.1 Introduction       10         3.2 Data Collection       10         3.2.1 Segregation of Water Demand       10                                                                                                                                                              |
| 3.1 Introduction103.2 Data Collection103.2.1 Segregation of Water Demand103.2.2 Population Statistics11                                                                                                                                                                        |
| 3.1 Introduction103.2 Data Collection103.2.1 Segregation of Water Demand103.2.2 Population Statistics113.2.3 Catchment Area:12                                                                                                                                                 |
| 3.1 Introduction103.2 Data Collection103.2.1 Segregation of Water Demand103.2.2 Population Statistics113.2.3 Catchment Area:123.2.4 Calculation Method:14                                                                                                                      |
| 3.1 Introduction103.2 Data Collection103.2.1 Segregation of Water Demand103.2.2 Population Statistics113.2.3 Catchment Area:123.2.4 Calculation Method:143.2.5 Rainfall Data Calculation14                                                                                     |
| 3.1 Introduction103.2 Data Collection103.2.1 Segregation of Water Demand103.2.2 Population Statistics113.2.3 Catchment Area:123.2.4 Calculation Method:143.2.5 Rainfall Data Calculation14CHAPTER IV27                                                                         |
| 3.1 Introduction103.2 Data Collection103.2.1 Segregation of Water Demand103.2.2 Population Statistics113.2.3 Catchment Area:123.2.4 Calculation Method:143.2.5 Rainfall Data Calculation14CHAPTER IV27Data Analysis and Result Discussion27                                    |
| 3.1 Introduction103.2 Data Collection103.2.1 Segregation of Water Demand103.2.2 Population Statistics113.2.3 Catchment Area:123.2.4 Calculation Method:143.2.5 Rainfall Data Calculation14CHAPTER IV27Data Analysis and Result Discussion274.1 Monthly Rainwater Harvesting:27 |

|     | 4.3.2 Data Set:                              | 34 |
|-----|----------------------------------------------|----|
|     | 4.3.2 Time Series Data Plot:                 | 34 |
|     | 4.3.3 Decomposition of additive time series: | 35 |
|     | 4.3.4 Precipitation Data Chart:              | 35 |
|     | 4.3.5 Rainfall Forecast for Next 10 Years:   | 36 |
| CHA | APTER V                                      | 37 |
| CON | ICLUSIONS AND RECOMMENDATIONS                | 37 |
| REF | ERENCES                                      | 38 |
|     |                                              |    |

# LIST OF FIGURES

| Figure 1 Water supply system of IUT                                  | 2  |
|----------------------------------------------------------------------|----|
| Figure 2 Satellite View of IUT                                       |    |
| Figure 3 IUT Campus                                                  | 4  |
| Figure 4 Sector Wise Water Distributions                             | 11 |
| Figure 5 Population of IUT                                           | 12 |
| Figure 6 Catchment Area of IUT                                       | 13 |
| Figure 7 Harvested and Pumped Groundwater                            |    |
| Figure 8 Average Rainfall (mm)                                       |    |
| Figure 9 Probable Harvested Rainwater (m <sup>3</sup> )              | 29 |
| Figure 10 Month Wise Daily Rainfall (mm)                             | 30 |
| Figure 11 Daily Probable Harvested Rainwater (m <sup>3</sup> )       | 30 |
| Figure 12 Daily Harvested Rainwater and Pumped Water (In Percentage) | 31 |
| Figure 13 Coding used in Rstudio                                     | 33 |
| Figure 14 Data Set in Rstudio                                        | 34 |
| Figure 15 Time Series Data Plot                                      | 34 |
| Figure 16 Decomposition of additive time series                      | 35 |
| Figure 17 Precipitation Data Chart                                   | 35 |
|                                                                      |    |

# LIST OF TABLES

| Table 1 Rainfall Data with daily supplementation for the month of January, 2022   | . 15 |
|-----------------------------------------------------------------------------------|------|
| Table 2 Rainfall Data with daily supplementation for the month of February, 2022  | . 16 |
| Table 3 Rainfall Data with daily supplementation for the month of March, 2022     | . 17 |
| Table 4 Rainfall Data with daily supplementation for the month of April, 2022     | . 18 |
| Table 5 Rainfall Data with daily supplementation for the month of May, 2022       | . 19 |
| Table 6 Rainfall Data with daily supplementation for the month of June, 2022      | . 20 |
| Table 7 Rainfall Data with daily supplementation for the month of July, 2022      | . 21 |
| Table 8 Rainfall Data with daily supplementation for the month of August, 2022    | . 22 |
| Table 9 Rainfall Data with daily supplementation for the month of September, 2022 | . 23 |
| Table 10 Rainfall Data with daily supplementation for the month of October, 2022  | . 24 |
| Table 11 Rainfall Data with daily supplementation for the month of November, 2022 | . 25 |
| Table 12 Rainfall Data with daily supplementation for the month of December, 2022 | . 26 |
| Table 13 Daily Rainwater Supplementation on any month                             | . 29 |
|                                                                                   |      |

### **CHAPTER I**

## **INTRODUCTION**

In this section, the background of the project which includes the current scenario of rainwater harvesting system, water supply system of IUT, outcome of the project and the study area is discussed.

#### **1.1 About Rainwater Harvesting:**

It is essential to look at alternative methods to meet water demands responsibly as the demand for sources of fresh water increases. Rainwater harvesting (RWH) is becoming more widely accepted as a practical approach to addressing water scarcity, conserving water, and easing the burden on conventional water sources. IUT has a vast built environment, which includes open areas and wide roof surfaces that may be used as possible rainwater collection locations. Universities are an intriguing example for determining the usability and impact of rainwater collecting systems because of the variety of water demands they have for academic buildings, residential facilities, landscaping, and recreational areas.

#### **1.2 Water supply system of IUT:**

The IUT water supply system is fully dependent groundwater supply system. Firstly, the water is pumped up by using submersible pump. Then it goes to two water reservoirs. After that it goes through 3 centrifugal pumps. The work for centrifugal pump is to push the water from the reservoir to the Air Vessels. Air Vessel is a type of pump, it has 50% water and 50% air. It maintains the water supply according to the needs of IUT by using the air pressure.

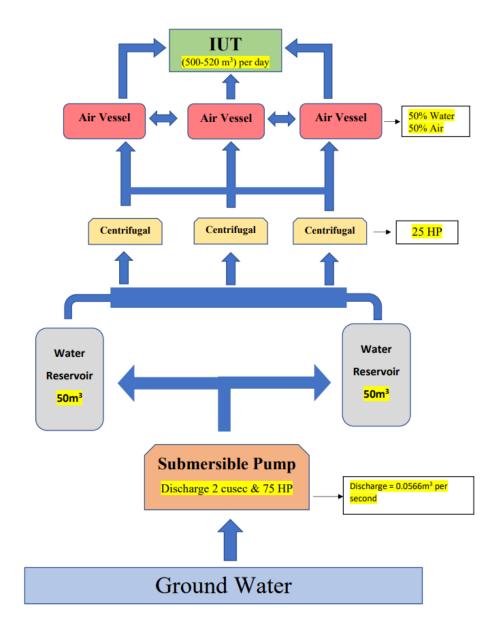



Figure 1 Water supply system of IUT

#### 1.3 Study Area:

The study area, IUT, is situated in Gazipur district. From the area of around 30 acres, the buildings which have suitable roof area are taken into consideration for rainwater harvesting in order to get the maximum amount of catchment area. The most suitable building areas were taken into consideration for using as rainwater catchment area. The catchment area is 90% of the total roof area. The total available catchment area is about  $10118 \text{ m}^2$ .



Figure 2 Satellite View of IUT

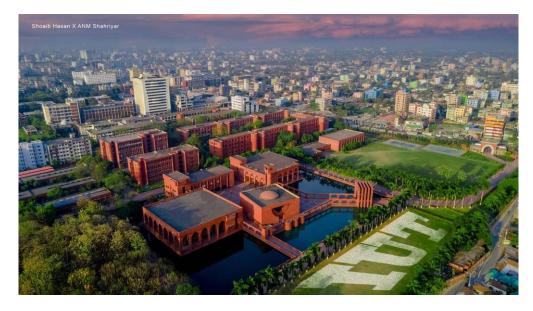



Figure 3 IUT Campus

#### **1.4 Problem Definition:**

Universities are crucial in addressing sustainable water management strategies since water shortage is a significant worldwide concern. IUT now relies on underground water source to satisfy its water needs, which strains the local water supply and makes the institution more vulnerable to water shortages and rising water prices. The university's reliance on outside resources increases its carbon footprint since it requires more energy to pump and purify water. This thesis intends to evaluate the possibility of rainwater collection as a workable option for IUT in order to lessen these difficulties and enhance sustainable water management. In order to use rainwater for non-potable purposes like cooling systems, toilet flushing, and landscape irrigation, it must be collected, stored, and used in different forms. The institution can utilize the existing water resources more effectively and lessen its reliance on outside water sources by installing rainwater collecting devices on campus.

### 1.5 Objective:

In the context of an Islamic university of technology, this thesis aims to study the possibility of rainwater collection as a sustainable water management approach. The objectives of the thesis are:

- To supplement the water demand with available rainwater
- To Develop Rainwater Harvesting Model

### **CHAPTER II**

### LITERATURE REVIEW

In order to investigate the possibilities of rainwater collection in a university context, this study of the literature will look at earlier work, case studies, and best practices.

#### 2.1 Water Scarcity and Sustainability:

Utilizing urban rainwater collecting to supplement the primary water supply can minimize total water use, water costs, and the amount of excess storm water that can burden the present drainage system (Mahmoud et al., 2014).

Utilizing urban rainwater collecting to supplement the primary water supply can minimize total water use, water costs, and the amount of excess storm water that can burden the present drainage system (Mahmoud et al., 2014). So for reducing dependency on local water sources, replenishing groundwater, and reducing stormwater runoff are all advantages of rainwater harvesting.

For a number of reasons, including water shortages and the requirement for water supply expansion, municipalities have expanded the installation of RWH systems. According to consolidated scientific and grey literature from the past 20 years, RWH actually belongs to the large family of detention-based Low Impact Development (LID) or Sustainable Drainage System (SuDS) approaches and can be used as a complementary measure to reduce frequency, peaks, and volumes of urban runoff if systems are properly designed. According to Burns et al. (2015) and Brodie (2008), increasing urban-catchment distributed detention by tank-based rainwater harvesting systems may lessen the effects of urbanization growth on the stormwater drainage system as well as potentially help mitigate environmental effects on receiving water bodies (e.g. Hamel and Fletcher, 2014).

#### 2.2 Rainwater Harvesting Systems:

In the world, rainwater harvesting (RWH) is arguably the most popular method of supplying water to demand. Many countries currently promote the updated use of this strategy to address the needs of increased water demand caused by climatic, environmental, and social changes due to new technological capabilities. (Amos et al., 2016).

RWH systems were introduced globally to conserve potable water, and cities like Beijing and Berlin demonstrated reduction in water supply as 25%(Zhang et al.,2009), 70% (Nolde, 2007) respectively. Rainfall patterns, catchment area estimates, and storage tank sizing are key design factors for rain water harvesting. Types of rainwater harvesting systems, including rooftop catchment, surface runoff collection, and subterranean storage, that are appropriate for universities. As a result, installing RWH systems helps communities become more self-sufficient in water and may defer the need to build new centralized water infrastructure (Steffen et al., 2012).

#### 2.3 Case Studies and Best Practices:

Due to natural arsenic poisoning of the groundwater, the usage of handpumps in Bangladesh has negatively impacted up to 70 million people with skin cancer and other health issues (Islam et al., 2010). By making space in the storage tank for future rain events, multiple-usage demands maximize rainwater collection by ensuring a reasonably continuous use of the water (Domènech and Saurí, 2011, Gardner and Vieritz, 2010). The effectiveness of the system in terms of stormwater mitigation may be significantly improved by including demands that are in line with regional rainfall patterns (Zhang et al., 2009).

Rainwater harvesting (RWH) is the process of gathering rainwater from roofs, terraces, courtyards, and other impervious building surfaces in order to concentrate, store, and treat it for use locally. Although the civil applications of collected rainwater vary (e.g., toilet flushing, washing clothes, gardening, cleaning terraces, and other occasional outside uses like vehicle washing), they all attempt to minimize use of drinking water from centrally provided sources. The technique of gathering, storing, and using runoff from roofs or other ground surfaces for useful purposes such as domestic water supply, agricultural use, and environmental management is known as rainwater harvesting (Anderson and Burton, 2009). According to GhaffarianHoseini et al. (2016), these applications might be responsible for 80–90% of total home water usage globally. They also show the enormous water-saving advantages of implementing RWH.

#### 2.4 Institutional Policies and Regulations:

The rise of the environmental movement in the 1960s and the subsequent development and implementation of federal policies for conservation and environmental quality that had an impact on water resources [i.e. the National Wild and Scenic Rivers Act of 1968 (WSRA), the National Environmental Policy Act of 1969 (NEPA), and the 1973 Endangered Species Act (ESA)] were partially responsible for the decline of large reclamation project developments., 2003 (Pisani).

So for implementing rainwater harvesting systems in universities is hampered by a number of issues, including technical, economic, cultural, and legal ones. Techniques should be adopted for removing obstacles and incorporating rainwater collection into university policy and procedures.

#### 2.5 Environmental and Educational Benefits:

Excess overflow water from RWH systems that would otherwise cause street runoff or enter the storm sewer network can be infiltrated for groundwater recharge when used in conjunction with infiltration-based solutions (often after preliminary treatment, as determined by national regulations) (Dillon, 2005). According to recent research (e.g. Hamel et al., 2012), infiltration techniques used in conjunction with RWH can also contribute to changing the urban microclimate by increasing moisture content and evapotranspiration, which reduces the effects of the heat island phenomenon (Furumai, 2008; Coutts et al., 2012).

Earlier research (e.g. Angrill et al., 2012) have examined the advantages of RWH system deployment for the environment in terms of emissions reduction and decreased resource use. In this regard, research in the scientific literature demonstrates that the type of implementation project (renovation or new construction) and the chosen use of rainwater in the building have a considerable impact on the system's economic feasibility (Devkota et al., 2015, Morales-Pinzón et al., 2015).

The literature clearly demonstrates the wide variety of applications of RWH systems in urbanized areas, but the outcomes and perception of the scope of potential benefits are varied and debatable, and methods for assessing the overall effectiveness of multiobjective (also competing) RWH systems are still in the early stages of development. In light of this, an in-depth analysis of the current state of the practice of application of RWH systems is carried out in this paper.

### **CHAPTER III**

### Methodology

#### **3.1 Introduction**

The Islamic University of Technology (IUT) is the subject of our study project's primary attention. We intended to determine the water demand segregation for residential and non-residential students and look into the catchment regions of particular buildings on the IUT campus. In order to do this, we measured water use manually and used the Bangladesh National Building Code (BNBC) of 2020 as a source of guidance. Additionally, we collected rainfall data for the last 21 years from NASA's website and the most recent demographic statistics for IUT from the institution's database.

#### **3.2 Data Collection**

#### 3.2.1 Segregation of Water Demand

To segregate the water demand, we employed a manual measurement method by using water measurement containers and stopwatches. This approach allowed us to collect accurate data on water consumption by residential and non-residential students. By following the guidelines provided in the BNBC 2020 codes, which outline water usage norms for different types of buildings, we determined the specific water requirements for each category. This analysis facilitated a better understanding of the water demands of different student groups within IUT.

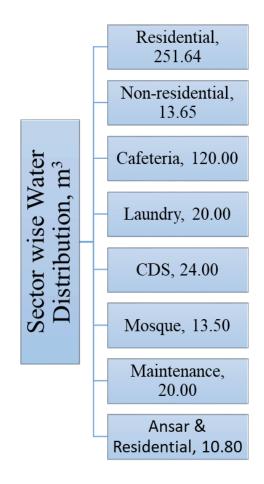



Figure 4 Sector Wise Water Distributions

#### **3.2.2 Population Statistics**

We gathered the most recent demographic statistics for IUT using the university's server in order to develop a thorough picture of water consumption. We were able to determine the community's total water needs using this data's useful insights into how many people live on campus.

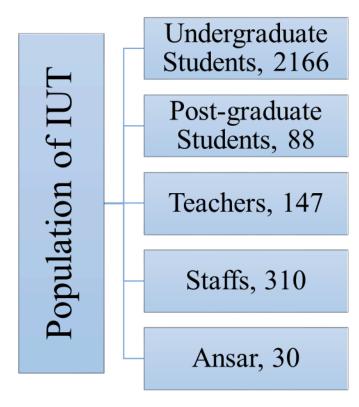



Figure 5 Population of IUT

#### 3.2.3 Catchment Area:

We strategically selected buildings on the IUT campus that had good catchment areas for collecting water in order to enable a thorough investigation. The places from which rainfall water may be efficiently gathered are known as catchment areas. We figured out the catchment areas of the chosen buildings using inspections and measurements we conducted on the landscape. The prospective availability of water for different uses on campus is greatly influenced by its catchment areas.

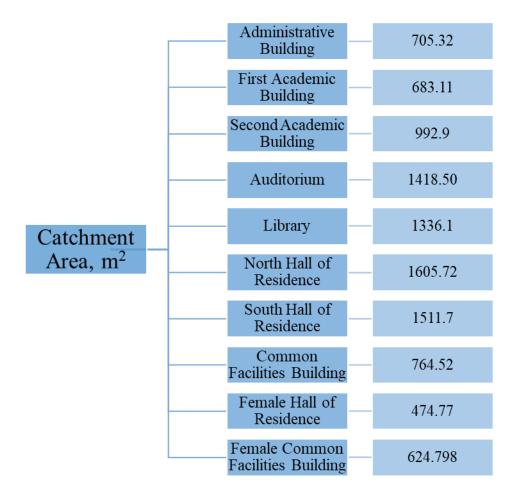



Figure 6 Catchment Area of IUT

#### **3.2.4 Calculation Method:**

Total monthly water demand = 500 m3 \* 30 days = 15,000 m3/monthThe available catchment area of the project, A = 108909.25 ft2 = 10118 m2

The quantity of potential Annual Rainwater Harvested, Qrainwater = CIA Where.

C = Coefficient of Runoff (0.85-0.95)

I = Intensity of Rainfall, m/year

A = Catchment area,

m2

So, Qrainwater = 0.85 \* 2.161 \*10118 = 18,585 m3/year

| С | 0.85                 |
|---|----------------------|
| А | 10118 m <sup>2</sup> |

#### **3.2.5 Rainfall Data Calculation**

We gathered rainfall data covering the last 21 years to evaluate the region's water resource availability. A dependable source of meteorological data, NASA's website provided the information. We were able to find patterns, trends, and fluctuations in rainfall over time by analyzing this huge dataset. We learned more about the possible water supply and sustainability for the IUT campus by comparing the rainfall data with the catchment areas. Rainfall data with daily supplementation of the 2022 year is given:

|           |          |                    | %         | %<br>Pumped |
|-----------|----------|--------------------|-----------|-------------|
|           | Daily    | Probable Harvested | Harvested | Ground      |
| Date      | Rainfall | Rainwater(m3)      | Rainwater | Water       |
| 1/1/2022  | 0        | 0                  | 0         | 100         |
| 1/2/2022  | 0        | 0                  | 0         | 100         |
| 1/3/2022  | 0        | 0                  | 0         | 100         |
| 1/4/2022  | 0        | 0                  | 0         | 100         |
| 1/5/2022  | 0        | 0                  | 0         | 100         |
| 1/6/2022  | 0        | 0                  | 0         | 100         |
| 1/7/2022  | 0        | 0                  | 0         | 100         |
| 1/8/2022  | 0        | 0                  | 0         | 100         |
| 1/9/2022  | 0        | 0                  | 0         | 100         |
| 1/10/2022 | 0        | 0                  | 0         | 100         |
| 1/11/2022 | 0.13     | 1.11804            | 0.22361   | 99.7764     |
| 1/12/2022 | 3.73     | 32.0791            | 6.41582   | 93.5842     |
| 1/13/2022 | 5.21     | 44.8076            | 8.96151   | 91.0385     |
| 1/14/2022 | 0.4      | 3.44012            | 0.68802   | 99.312      |
| 1/15/2022 | 0.1      | 0.86003            | 0.17201   | 99.828      |
| 1/16/2022 | 0.04     | 0.34401            | 0.0688    | 99.9312     |
| 1/17/2022 | 0        | 0                  | 0         | 100         |
| 1/18/2022 | 0        | 0                  | 0         | 100         |
| 1/19/2022 | 0        | 0                  | 0         | 100         |
| 1/20/2022 | 0        | 0                  | 0         | 100         |
| 1/21/2022 | 0        | 0                  | 0         | 100         |
| 1/22/2022 | 0        | 0                  | 0         | 100         |
| 1/23/2022 | 0.34     | 2.9241             | 0.58482   | 99.4152     |
| 1/24/2022 | 4.92     | 42.3135            | 8.4627    | 91.5373     |
| 1/25/2022 | 2.11     | 18.1466            | 3.62933   | 96.3707     |
| 1/26/2022 | 1.74     | 14.9645            | 2.9929    | 97.0071     |
| 1/27/2022 | 4.68     | 40.2494            | 8.04988   | 91.9501     |
| 1/28/2022 | 0.51     | 4.38615            | 0.87723   | 99.1228     |
| 1/29/2022 | 0        | 0                  | 0         | 100         |
| 1/30/2022 | 0        | 0                  | 0         | 100         |
| 1/31/2022 | 0        | 0                  | 0         | 100         |

Table 1 Rainfall Data with daily supplementation for the month of January, 2022

| Date      | Daily<br>Rainfall | Probable Harvested<br>Rainwater(m3) | %<br>Harvested<br>Rainwater | %<br>Pumped<br>Ground<br>Water |
|-----------|-------------------|-------------------------------------|-----------------------------|--------------------------------|
| 2/1/2022  | 0.15              | 1.29005                             | 0.25801                     | 99.742                         |
| 2/2/2022  | 0.21              | 1.80606                             | 0.36121                     | 99.6388                        |
| 2/3/2022  | 0.16              | 1.37605                             | 0.27521                     | 99.7248                        |
| 2/4/2022  | 11.35             | 97.6134                             | 19.5227                     | 80.4773                        |
| 2/5/2022  | 12.5              | 107.504                             | 21.5008                     | 78.4993                        |
| 2/6/2022  | 13.06             | 112.32                              | 22.464                      | 77.536                         |
| 2/7/2022  | 0                 | 0                                   | 0                           | 100                            |
| 2/8/2022  | 0                 | 0                                   | 0                           | 100                            |
| 2/9/2022  | 0                 | 0                                   | 0                           | 100                            |
| 2/10/2022 | 0.24              | 2.06407                             | 0.41281                     | 99.5872                        |
| 2/11/2022 | 0.23              | 1.97807                             | 0.39561                     | 99.6044                        |
| 2/12/2022 | 0.01              | 0.086                               | 0.0172                      | 99.9828                        |
| 2/13/2022 | 0                 | 0                                   | 0                           | 100                            |
| 2/14/2022 | 0                 | 0                                   | 0                           | 100                            |
| 2/15/2022 | 0                 | 0                                   | 0                           | 100                            |
| 2/16/2022 | 0                 | 0                                   | 0                           | 100                            |
| 2/17/2022 | 0                 | 0                                   | 0                           | 100                            |
| 2/18/2022 | 0                 | 0                                   | 0                           | 100                            |
| 2/19/2022 | 0                 | 0                                   | 0                           | 100                            |
| 2/20/2022 | 1.91              | 16.4266                             | 3.28531                     | 96.7147                        |
| 2/21/2022 | 1.83              | 15.7385                             | 3.14771                     | 96.8523                        |
| 2/22/2022 | 1.13              | 9.71834                             | 1.94367                     | 98.0563                        |
| 2/23/2022 | 0.06              | 0.51602                             | 0.1032                      | 99.8968                        |
| 2/24/2022 | 0.01              | 0.086                               | 0.0172                      | 99.9828                        |
| 2/25/2022 | 1.96              | 16.8566                             | 3.37132                     | 96.6287                        |
| 2/26/2022 | 0.86              | 7.39626                             | 1.47925                     | 98.5207                        |
| 2/27/2022 | 0                 | 0                                   | 0                           | 100                            |
| 2/28/2022 | 0.4               | 3.44012                             | 0.68802                     | 99.312                         |

Table 2 Rainfall Data with daily supplementation for the month of February, 2022

| Date      | Daily<br>Rainfall | Probable Harvested<br>Rainwater(m3) | %<br>Harvested<br>Rainwater | %<br>Pumped<br>Ground<br>Water |
|-----------|-------------------|-------------------------------------|-----------------------------|--------------------------------|
| 3/1/2022  | 0.09              | 0.77403                             | 0.15481                     | 99.8452                        |
| 3/2/2022  | 0                 | 0                                   | 0                           | 100                            |
| 3/3/2022  | 0                 | 0                                   | 0                           | 100                            |
| 3/4/2022  | 0                 | 0                                   | 0                           | 100                            |
| 3/5/2022  | 0                 | 0                                   | 0                           | 100                            |
| 3/6/2022  | 0                 | 0                                   | 0                           | 100                            |
| 3/7/2022  | 0                 | 0                                   | 0                           | 100                            |
| 3/8/2022  | 0                 | 0                                   | 0                           | 100                            |
| 3/9/2022  | 0                 | 0                                   | 0                           | 100                            |
| 3/10/2022 | 0                 | 0                                   | 0                           | 100                            |
| 3/11/2022 | 0                 | 0                                   | 0                           | 100                            |
| 3/12/2022 | 0                 | 0                                   | 0                           | 100                            |
| 3/13/2022 | 0                 | 0                                   | 0                           | 100                            |
| 3/14/2022 | 0                 | 0                                   | 0                           | 100                            |
| 3/15/2022 | 0                 | 0                                   | 0                           | 100                            |
| 3/16/2022 | 0                 | 0                                   | 0                           | 100                            |
| 3/17/2022 | 0                 | 0                                   | 0                           | 100                            |
| 3/18/2022 | 0                 | 0                                   | 0                           | 100                            |
| 3/19/2022 | 0                 | 0                                   | 0                           | 100                            |
| 3/20/2022 | 0                 | 0                                   | 0                           | 100                            |
| 3/21/2022 | 0                 | 0                                   | 0                           | 100                            |
| 3/22/2022 | 0                 | 0                                   | 0                           | 100                            |
| 3/23/2022 | 0                 | 0                                   | 0                           | 100                            |
| 3/24/2022 | 0.21              | 1.80606                             | 0.36121                     | 99.6388                        |
| 3/25/2022 | 0.63              | 5.41819                             | 1.08364                     | 98.9164                        |
| 3/26/2022 | 2.64              | 22.7048                             | 4.54096                     | 95.459                         |
| 3/27/2022 | 1.31              | 11.2664                             | 2.25328                     | 97.7467                        |
| 3/28/2022 | 2.91              | 25.0269                             | 5.00537                     | 94.9946                        |
| 3/29/2022 | 6.09              | 52.3758                             | 10.4752                     | 89.5248                        |
| 3/30/2022 | 4.89              | 42.0555                             | 8.41109                     | 91.5889                        |
| 3/31/2022 | 1.21              | 10.4064                             | 2.08127                     | 97.9187                        |

 Table 3 Rainfall Data with daily supplementation for the month of March, 2022

| Date      | Daily<br>Rainfall | Probable Harvested<br>Rainwater(m3) | %<br>Harvested<br>Rainwater | %<br>Pumped<br>Ground<br>Water |
|-----------|-------------------|-------------------------------------|-----------------------------|--------------------------------|
| 4/1/2022  | 1.96              | 16.8566                             | 3.37132                     | 96.6287                        |
| 4/2/2022  | 2.94              | 25.2849                             | 5.05698                     | 94.943                         |
| 4/3/2022  | 0.68              | 5.8482                              | 1.16964                     | 98.8304                        |
| 4/4/2022  | 1.29              | 11.0944                             | 2.21888                     | 97.7811                        |
| 4/5/2022  | 3.88              | 33.3692                             | 6.67383                     | 93.3262                        |
| 4/6/2022  | 2.32              | 19.9527                             | 3.99054                     | 96.0095                        |
| 4/7/2022  | 0                 | 0                                   | 0                           | 100                            |
| 4/8/2022  | 0                 | 0                                   | 0                           | 100                            |
| 4/9/2022  | 0.23              | 1.97807                             | 0.39561                     | 99.6044                        |
| 4/10/2022 | 3.43              | 29.499                              | 5.89981                     | 94.1002                        |
| 4/11/2022 | 2.4               | 20.6407                             | 4.12814                     | 95.8719                        |
| 4/12/2022 | 3.42              | 29.413                              | 5.88261                     | 94.1174                        |
| 4/13/2022 | 3.22              | 27.693                              | 5.53859                     | 94.4614                        |
| 4/14/2022 | 1.64              | 14.1045                             | 2.8209                      | 97.1791                        |
| 4/15/2022 | 0.56              | 4.81617                             | 0.96323                     | 99.0368                        |
| 4/16/2022 | 1.05              | 9.03032                             | 1.80606                     | 98.1939                        |
| 4/17/2022 | 1.55              | 13.3305                             | 2.66609                     | 97.3339                        |
| 4/18/2022 | 1.87              | 16.0826                             | 3.21651                     | 96.7835                        |
| 4/19/2022 | 6.48              | 55.7299                             | 11.146                      | 88.854                         |
| 4/20/2022 | 13.63             | 117.222                             | 23.4444                     | 76.5556                        |
| 4/21/2022 | 8.56              | 73.6186                             | 14.7237                     | 85.2763                        |
| 4/22/2022 | 7.62              | 65.5343                             | 13.1069                     | 86.8931                        |
| 4/23/2022 | 22.72             | 195.399                             | 39.0798                     | 60.9202                        |
| 4/24/2022 | 12.45             | 107.074                             | 21.4147                     | 78.5853                        |
| 4/25/2022 | 0.72              | 6.19222                             | 1.23844                     | 98.7616                        |
| 4/26/2022 | 2.21              | 19.0067                             | 3.80133                     | 96.1987                        |
| 4/27/2022 | 7.05              | 60.6321                             | 12.1264                     | 87.8736                        |
| 4/28/2022 | 0.59              | 5.07418                             | 1.01484                     | 98.9852                        |
| 4/29/2022 | 1.25              | 10.7504                             | 2.15008                     | 97.8499                        |
| 4/30/2022 | 3.3               | 28.381                              | 5.6762                      | 94.3238                        |

 Table 4 Rainfall Data with daily supplementation for the month of April, 2022

|           | Daily    | Probable Harvested | %<br>Harvested | %<br>Pumped<br>Ground |
|-----------|----------|--------------------|----------------|-----------------------|
| Date      | Rainfall | Rainwater(m3)      | Rainwater      | Water                 |
| 5/1/2022  | 0.57     | 4.90217            | 0.98043        | 99.0196               |
| 5/2/2022  | 1.82     | 15.6525            | 3.13051        | 96.8695               |
| 5/3/2022  | 11.52    | 99.0755            | 19.8151        | 80.1849               |
| 5/4/2022  | 12.6     | 108.364            | 21.6728        | 78.3272               |
| 5/5/2022  | 7.92     | 68.1144            | 13.6229        | 86.3771               |
| 5/6/2022  | 13.67    | 117.566            | 23.5132        | 76.4868               |
| 5/7/2022  | 4.54     | 39.0454            | 7.80907        | 92.1909               |
| 5/8/2022  | 1.97     | 16.9426            | 3.38852        | 96.6115               |
| 5/9/2022  | 8.4      | 72.2425            | 14.4485        | 85.5515               |
| 5/10/2022 | 18.99    | 163.32             | 32.6639        | 67.3361               |
| 5/11/2022 | 32.29    | 277.704            | 55.5407        | 44.4593               |
| 5/12/2022 | 17.57    | 151.107            | 30.2215        | 69.7785               |
| 5/13/2022 | 45.1     | 387.874            | 77.5747        | 22.4253               |
| 5/14/2022 | 22.6     | 194.367            | 38.8734        | 61.1266               |
| 5/15/2022 | 3.11     | 26.7469            | 5.34939        | 94.6506               |
| 5/16/2022 | 2.85     | 24.5109            | 4.90217        | 95.0978               |
| 5/17/2022 | 16.13    | 138.723            | 27.7446        | 72.2554               |
| 5/18/2022 | 19.02    | 163.578            | 32.7155        | 67.2845               |
| 5/19/2022 | 27.61    | 237.454            | 47.4909        | 52.5091               |
| 5/20/2022 | 27.51    | 236.594            | 47.3189        | 52.6811               |
| 5/21/2022 | 50.49    | 434.229            | 86.8458        | 13.1542               |
| 5/22/2022 | 12.27    | 105.526            | 21.1051        | 78.8949               |
| 5/23/2022 | 17.29    | 148.699            | 29.7398        | 70.2602               |
| 5/24/2022 | 4.35     | 37.4113            | 7.48226        | 92.5177               |
| 5/25/2022 | 4.95     | 42.5715            | 8.5143         | 91.4857               |
| 5/26/2022 | 16.71    | 143.711            | 28.7422        | 71.2578               |
| 5/27/2022 | 8.77     | 75.4246            | 15.0849        | 84.9151               |
| 5/28/2022 | 6.64     | 57.106             | 11.4212        | 88.5788               |
| 5/29/2022 | 22.87    | 196.689            | 39.3378        | 60.6622               |
| 5/30/2022 | 16.89    | 145.259            | 29.0518        | 70.9482               |
| 5/31/2022 | 8.46     | 72.7585            | 14.5517        | 85.4483               |

Table 5 Rainfall Data with daily supplementation for the month of May, 2022

| Date      | Daily<br>Rainfall | Probable Harvested<br>Rainwater(m3) | %<br>Harvested<br>Rainwater | %<br>Pumped<br>Ground<br>Water |
|-----------|-------------------|-------------------------------------|-----------------------------|--------------------------------|
| 6/1/2022  | 6.49              | 55.8159                             | 11.1632                     | 88.8368                        |
| 6/2/2022  | 4.77              | 41.0234                             | 8.20469                     | 91.7953                        |
| 6/3/2022  | 8.43              | 72.5005                             | 14.5001                     | 85.4999                        |
| 6/4/2022  | 19.18             | 164.954                             | 32.9908                     | 67.0092                        |
| 6/5/2022  | 7.71              | 66.3083                             | 13.2617                     | 86.7383                        |
| 6/6/2022  | 7.86              | 67.5984                             | 13.5197                     | 86.4803                        |
| 6/7/2022  | 16.08             | 138.293                             | 27.6586                     | 72.3414                        |
| 6/8/2022  | 22.04             | 189.551                             | 37.9101                     | 62.0899                        |
| 6/9/2022  | 34.68             | 298.258                             | 59.6517                     | 40.3483                        |
| 6/10/2022 | 41.26             | 354.848                             | 70.9697                     | 29.0303                        |
| 6/11/2022 | 0.82              | 7.05225                             | 1.41045                     | 98.5896                        |
| 6/12/2022 | 4.73              | 40.6794                             | 8.13588                     | 91.8641                        |
| 6/13/2022 | 7.96              | 68.4584                             | 13.6917                     | 86.3083                        |
| 6/14/2022 | 10.42             | 89.6151                             | 17.923                      | 82.077                         |
| 6/15/2022 | 7.5               | 64.5023                             | 12.9005                     | 87.0996                        |
| 6/16/2022 | 17.99             | 154.719                             | 30.9439                     | 69.0561                        |
| 6/17/2022 | 49.39             | 424.769                             | 84.9538                     | 15.0462                        |
| 6/18/2022 | 53.5              | 460.116                             | 92.0232                     | 7.97679                        |
| 6/19/2022 | 26.07             | 224.21                              | 44.842                      | 55.158                         |
| 6/20/2022 | 19.8              | 170.286                             | 34.0572                     | 65.9428                        |
| 6/21/2022 | 14.52             | 124.876                             | 24.9753                     | 75.0247                        |
| 6/22/2022 | 2.83              | 24.3388                             | 4.86777                     | 95.1322                        |
| 6/23/2022 | 14.93             | 128.402                             | 25.6805                     | 74.3195                        |
| 6/24/2022 | 3.01              | 25.8869                             | 5.17738                     | 94.8226                        |
| 6/25/2022 | 3.26              | 28.037                              | 5.6074                      | 94.3926                        |
| 6/26/2022 | 4.17              | 35.8633                             | 7.17265                     | 92.8273                        |
| 6/27/2022 | 2.48              | 21.3287                             | 4.26575                     | 95.7343                        |
| 6/28/2022 | 4.62              | 39.7334                             | 7.94668                     | 92.0533                        |
| 6/29/2022 | 8.25              | 70.9525                             | 14.1905                     | 85.8095                        |
| 6/30/2022 | 13.82             | 118.856                             | 23.7712                     | 76.2288                        |

Table 6 Rainfall Data with daily supplementation for the month of June, 2022

|           | Daily    | Probable Harvested | %<br>Harvested | %<br>Pumped<br>Ground |
|-----------|----------|--------------------|----------------|-----------------------|
| Date      | Rainfall | Rainwater(m3)      | Rainwater      | Water                 |
| 7/1/2022  | 4.55     | 39.1314            | 7.82627        | 92.1737               |
| 7/2/2022  | 3.37     | 28.983             | 5.7966         | 94.2034               |
| 7/3/2022  | 6.55     | 56.332             | 11.2664        | 88.7336               |
| 7/4/2022  | 7.25     | 62.3522            | 12.4704        | 87.5296               |
| 7/5/2022  | 0.92     | 7.91228            | 1.58246        | 98.4175               |
| 7/6/2022  | 22.11    | 190.153            | 38.0305        | 61.9695               |
| 7/7/2022  | 2.01     | 17.2866            | 3.45732        | 96.5427               |
| 7/8/2022  | 2.48     | 21.3287            | 4.26575        | 95.7343               |
| 7/9/2022  | 1        | 8.6003             | 1.72006        | 98.2799               |
| 7/10/2022 | 1.87     | 16.0826            | 3.21651        | 96.7835               |
| 7/11/2022 | 3.1      | 26.6609            | 5.33219        | 94.6678               |
| 7/12/2022 | 1.05     | 9.03032            | 1.80606        | 98.1939               |
| 7/13/2022 | 1.65     | 14.1905            | 2.8381         | 97.1619               |
| 7/14/2022 | 3.53     | 30.3591            | 6.07181        | 93.9282               |
| 7/15/2022 | 10.59    | 91.0772            | 18.2154        | 81.7846               |
| 7/16/2022 | 2.51     | 21.5868            | 4.31735        | 95.6826               |
| 7/17/2022 | 6.41     | 55.1279            | 11.0256        | 88.9744               |
| 7/18/2022 | 2.05     | 17.6306            | 3.52612        | 96.4739               |
| 7/19/2022 | 4.75     | 40.8514            | 8.17029        | 91.8297               |
| 7/20/2022 | 8.51     | 73.1886            | 14.6377        | 85.3623               |
| 7/21/2022 | 3.11     | 26.7469            | 5.34939        | 94.6506               |
| 7/22/2022 | 1.43     | 12.2984            | 2.45969        | 97.5403               |
| 7/23/2022 | 14.77    | 127.026            | 25.4053        | 74.5947               |
| 7/24/2022 | 3.91     | 33.6272            | 6.72543        | 93.2746               |
| 7/25/2022 | 13.61    | 117.05             | 23.41          | 76.59                 |
| 7/26/2022 | 5.84     | 50.2258            | 10.0452        | 89.9548               |
| 7/27/2022 | 2.91     | 25.0269            | 5.00537        | 94.9946               |
| 7/28/2022 | 8.97     | 77.1447            | 15.4289        | 84.5711               |
| 7/29/2022 | 10.41    | 89.5291            | 17.9058        | 82.0942               |
| 7/30/2022 | 4.74     | 40.7654            | 8.15308        | 91.8469               |
| 7/31/2022 | 8.34     | 71.7265            | 14.3453        | 85.6547               |

Table 7 Rainfall Data with daily supplementation for the month of July, 2022

| Date      | Daily<br>Rainfall | Probable Harvested<br>Rainwater(m3) | %<br>Harvested<br>Rainwater | %<br>Pumped<br>Ground<br>Water |
|-----------|-------------------|-------------------------------------|-----------------------------|--------------------------------|
| 8/1/2022  | 19.94             | 171.49                              | 34.298                      | 65.702                         |
| 8/2/2022  | 9.14              | 78.6067                             | 15.7213                     | 84.2787                        |
| 8/3/2022  | 7.09              | 60.9761                             | 12.1952                     | 87.8048                        |
| 8/4/2022  | 18.46             | 158.762                             | 31.7523                     | 68.2477                        |
| 8/5/2022  | 12.77             | 109.826                             | 21.9652                     | 78.0348                        |
| 8/6/2022  | 26.35             | 226.618                             | 45.3236                     | 54.6764                        |
| 8/7/2022  | 13.73             | 118.082                             | 23.6164                     | 76.3836                        |
| 8/8/2022  | 7.72              | 66.3943                             | 13.2789                     | 86.7211                        |
| 8/9/2022  | 3.41              | 29.327                              | 5.8654                      | 94.1346                        |
| 8/10/2022 | 1.53              | 13.1585                             | 2.63169                     | 97.3683                        |
| 8/11/2022 | 1.85              | 15.9106                             | 3.18211                     | 96.8179                        |
| 8/12/2022 | 1                 | 8.6003                              | 1.72006                     | 98.2799                        |
| 8/13/2022 | 9.62              | 82.7349                             | 16.547                      | 83.453                         |
| 8/14/2022 | 17.9              | 153.945                             | 30.7891                     | 69.2109                        |
| 8/15/2022 | 13.41             | 115.33                              | 23.066                      | 76.934                         |
| 8/16/2022 | 3.77              | 32.4231                             | 6.48463                     | 93.5154                        |
| 8/17/2022 | 4.45              | 38.2713                             | 7.65427                     | 92.3457                        |
| 8/18/2022 | 3.89              | 33.4552                             | 6.69103                     | 93.309                         |
| 8/19/2022 | 13.6              | 116.964                             | 23.3928                     | 76.6072                        |
| 8/20/2022 | 21.35             | 183.616                             | 36.7233                     | 63.2767                        |
| 8/21/2022 | 10.25             | 88.1531                             | 17.6306                     | 82.3694                        |
| 8/22/2022 | 1.68              | 14.4485                             | 2.8897                      | 97.1103                        |
| 8/23/2022 | 22.87             | 196.689                             | 39.3378                     | 60.6622                        |
| 8/24/2022 | 5.51              | 47.3877                             | 9.47753                     | 90.5225                        |
| 8/25/2022 | 3.85              | 33.1112                             | 6.62223                     | 93.3778                        |
| 8/26/2022 | 0.84              | 7.22425                             | 1.44485                     | 98.5551                        |
| 8/27/2022 | 3.54              | 30.4451                             | 6.08901                     | 93.911                         |
| 8/28/2022 | 6.99              | 60.1161                             | 12.0232                     | 87.9768                        |
| 8/29/2022 | 2.98              | 25.6289                             | 5.12578                     | 94.8742                        |
| 8/30/2022 | 6.41              | 55.1279                             | 11.0256                     | 88.9744                        |
| 8/31/2022 | 2.43              | 20.8987                             | 4.17975                     | 95.8203                        |

Table 8 Rainfall Data with daily supplementation for the month of August, 2022

| Date      | Daily<br>Rainfall | Probable Harvested<br>Rainwater(m3) | %<br>Harvested<br>Rainwater | %<br>Pumped<br>Ground<br>Water |
|-----------|-------------------|-------------------------------------|-----------------------------|--------------------------------|
| 9/1/2022  | 9.67              | 83.1649                             | 16.633                      | 83.367                         |
| 9/2/2022  | 10.08             | 86.691                              | 17.3382                     | 82.6618                        |
| 9/3/2022  | 23.78             | 204.515                             | 40.903                      | 59.097                         |
| 9/4/2022  | 28.11             | 241.754                             | 48.3509                     | 51.6491                        |
| 9/5/2022  | 12.91             | 111.03                              | 22.206                      | 77.794                         |
| 9/6/2022  | 15.83             | 136.143                             | 27.2285                     | 72.7715                        |
| 9/7/2022  | 8.98              | 77.2307                             | 15.4461                     | 84.5539                        |
| 9/8/2022  | 4.29              | 36.8953                             | 7.37906                     | 92.6209                        |
| 9/9/2022  | 16.36             | 140.701                             | 28.1402                     | 71.8598                        |
| 9/10/2022 | 9.87              | 84.885                              | 16.977                      | 83.023                         |
| 9/11/2022 | 19.42             | 167.018                             | 33.4036                     | 66.5964                        |
| 9/12/2022 | 14.13             | 121.522                             | 24.3044                     | 75.6956                        |
| 9/13/2022 | 39                | 335.412                             | 67.0823                     | 32.9177                        |
| 9/14/2022 | 44.14             | 379.617                             | 75.9234                     | 24.0766                        |
| 9/15/2022 | 25.95             | 223.178                             | 44.6356                     | 55.3644                        |
| 9/16/2022 | 12.38             | 106.472                             | 21.2943                     | 78.7057                        |
| 9/17/2022 | 1.94              | 16.6846                             | 3.33692                     | 96.6631                        |
| 9/18/2022 | 1.67              | 14.3625                             | 2.8725                      | 97.1275                        |
| 9/19/2022 | 15.07             | 129.607                             | 25.9213                     | 74.0787                        |
| 9/20/2022 | 3.16              | 27.1769                             | 5.43539                     | 94.5646                        |
| 9/21/2022 | 3.35              | 28.811                              | 5.7622                      | 94.2378                        |
| 9/22/2022 | 3.27              | 28.123                              | 5.6246                      | 94.3754                        |
| 9/23/2022 | 2.46              | 21.1567                             | 4.23135                     | 95.7687                        |
| 9/24/2022 | 2.58              | 22.1888                             | 4.43775                     | 95.5622                        |
| 9/25/2022 | 6.24              | 53.6659                             | 10.7332                     | 89.2668                        |
| 9/26/2022 | 3.49              | 30.015                              | 6.00301                     | 93.997                         |
| 9/27/2022 | 13.3              | 114.384                             | 22.8768                     | 77.1232                        |
| 9/28/2022 | 3.33              | 28.639                              | 5.7278                      | 94.2722                        |
| 9/29/2022 | 1.33              | 11.4384                             | 2.28768                     | 97.7123                        |
| 9/30/2022 | 0.71              | 6.10621                             | 1.22124                     | 98.7788                        |

 Table 9 Rainfall Data with daily supplementation for the month of September, 2022

| Date       | Daily<br>Rainfall | Probable Harvested<br>Rainwater(m3) | %<br>Harvested<br>Rainwater | %<br>Pumped<br>Ground<br>Water |
|------------|-------------------|-------------------------------------|-----------------------------|--------------------------------|
| 10/1/2022  | 7.12              | 61.2341                             | 12.2468                     | 87.7532                        |
| 10/2/2022  | 34.93             | 300.408                             | 60.0817                     | 39.9183                        |
| 10/3/2022  | 21.14             | 181.81                              | 36.3621                     | 63.6379                        |
| 10/4/2022  | 12.19             | 104.838                             | 20.9675                     | 79.0325                        |
| 10/5/2022  | 10.22             | 87.8951                             | 17.579                      | 82.421                         |
| 10/6/2022  | 2.15              | 18.4906                             | 3.69813                     | 96.3019                        |
| 10/7/2022  | 2.09              | 17.9746                             | 3.59493                     | 96.4051                        |
| 10/8/2022  | 1.41              | 12.1264                             | 2.42528                     | 97.5747                        |
| 10/9/2022  | 6.19              | 53.2359                             | 10.6472                     | 89.3528                        |
| 10/10/2022 | 7.11              | 61.1481                             | 12.2296                     | 87.7704                        |
| 10/11/2022 | 12.47             | 107.246                             | 21.4491                     | 78.5509                        |
| 10/12/2022 | 8.18              | 70.3505                             | 14.0701                     | 85.9299                        |
| 10/13/2022 | 8.06              | 69.3184                             | 13.8637                     | 86.1363                        |
| 10/14/2022 | 11.08             | 95.2913                             | 19.0583                     | 80.9417                        |
| 10/15/2022 | 1.38              | 11.8684                             | 2.37368                     | 97.6263                        |
| 10/16/2022 | 2.1               | 18.0606                             | 3.61213                     | 96.3879                        |
| 10/17/2022 | 1.04              | 8.94431                             | 1.78886                     | 98.2111                        |
| 10/18/2022 | 0.46              | 3.95614                             | 0.79123                     | 99.2088                        |
| 10/19/2022 | 0.13              | 1.11804                             | 0.22361                     | 99.7764                        |
| 10/20/2022 | 0.04              | 0.34401                             | 0.0688                      | 99.9312                        |
| 10/21/2022 | 0                 | 0                                   | 0                           | 100                            |
| 10/22/2022 | 0                 | 0                                   | 0                           | 100                            |
| 10/23/2022 | 14.51             | 124.79                              | 24.9581                     | 75.0419                        |
| 10/24/2022 | 144.77            | 1245.07                             | 249.013                     | -149.01                        |
| 10/25/2022 | 12.64             | 108.708                             | 21.7416                     | 78.2584                        |
| 10/26/2022 | 3.6               | 30.9611                             | 6.19222                     | 93.8078                        |
| 10/27/2022 | 0                 | 0                                   | 0                           | 100                            |
| 10/28/2022 | 0                 | 0                                   | 0                           | 100                            |
| 10/29/2022 | 0.08              | 0.68802                             | 0.1376                      | 99.8624                        |
| 10/30/2022 | 2.99              | 25.7149                             | 5.14298                     | 94.857                         |
| 10/31/2022 | 0.04              | 0.34401                             | 0.0688                      | 99.9312                        |

Table 10 Rainfall Data with daily supplementation for the month of October, 2022

| Date       | Daily<br>Rainfall | Probable Harvested<br>Rainwater(m3) | %<br>Harvested<br>Rainwater | %<br>Pumped<br>Ground<br>Water |
|------------|-------------------|-------------------------------------|-----------------------------|--------------------------------|
| 11/1/2022  | 0                 | 0                                   | 0                           | 100                            |
| 11/2/2022  | 0                 | 0                                   | 0                           | 100                            |
| 11/3/2022  | 0                 | 0                                   | 0                           | 100                            |
| 11/4/2022  | 0                 | 0                                   | 0                           | 100                            |
| 11/5/2022  | 0.02              | 0.17201                             | 0.0344                      | 99.9656                        |
| 11/6/2022  | 3.08              | 26.4889                             | 5.29778                     | 94.7022                        |
| 11/7/2022  | 0.01              | 0.086                               | 0.0172                      | 99.9828                        |
| 11/8/2022  | 0                 | 0                                   | 0                           | 100                            |
| 11/9/2022  | 0                 | 0                                   | 0                           | 100                            |
| 11/10/2022 | 0                 | 0                                   | 0                           | 100                            |
| 11/11/2022 | 0                 | 0                                   | 0                           | 100                            |
| 11/12/2022 | 0                 | 0                                   | 0                           | 100                            |
| 11/13/2022 | 0                 | 0                                   | 0                           | 100                            |
| 11/14/2022 | 0.03              | 0.25801                             | 0.0516                      | 99.9484                        |
| 11/15/2022 | 0                 | 0                                   | 0                           | 100                            |
| 11/16/2022 | 0                 | 0                                   | 0                           | 100                            |
| 11/17/2022 | 0                 | 0                                   | 0                           | 100                            |
| 11/18/2022 | 0                 | 0                                   | 0                           | 100                            |
| 11/19/2022 | 0                 | 0                                   | 0                           | 100                            |
| 11/20/2022 | 0.07              | 0.60202                             | 0.1204                      | 99.8796                        |
| 11/21/2022 | 0.92              | 7.91228                             | 1.58246                     | 98.4175                        |
| 11/22/2022 | 0                 | 0                                   | 0                           | 100                            |
| 11/23/2022 | 0                 | 0                                   | 0                           | 100                            |
| 11/24/2022 | 0                 | 0                                   | 0                           | 100                            |
| 11/25/2022 | 0                 | 0                                   | 0                           | 100                            |
| 11/26/2022 | 0                 | 0                                   | 0                           | 100                            |
| 11/27/2022 | 0                 | 0                                   | 0                           | 100                            |
| 11/28/2022 | 0                 | 0                                   | 0                           | 100                            |
| 11/29/2022 | 0                 | 0                                   | 0                           | 100                            |
| 11/30/2022 | 0                 | 0                                   | 0<br>anth of November 2022  | 100                            |

Table 11 Rainfall Data with daily supplementation for the month of November, 2022

|            |          |                    | %         | %            |
|------------|----------|--------------------|-----------|--------------|
|            | Daily    | Probable Harvested | Harvested | Pumped       |
| Date       | Rainfall | Rainwater(m3)      | Rainwater | Ground Water |
| 12/1/2022  | 0        | 0                  | 0         | 100          |
| 12/2/2022  | 0        | 0                  | 0         | 100          |
| 12/3/2022  | 0        | 0                  | 0         | 100          |
| 12/4/2022  | 0        | 0                  | 0         | 100          |
| 12/5/2022  | 0        | 0                  | 0         | 100          |
| 12/6/2022  | 0        | 0                  | 0         | 100          |
| 12/7/2022  | 0.01     | 0.086              | 0.0172    | 99.9828      |
| 12/8/2022  | 0        | 0                  | 0         | 100          |
| 12/9/2022  | 0        | 0                  | 0         | 100          |
| 12/10/2022 | 0        | 0                  | 0         | 100          |
| 12/11/2022 | 0        | 0                  | 0         | 100          |
| 12/12/2022 | 0        | 0                  | 0         | 100          |
| 12/13/2022 | 0        | 0                  | 0         | 100          |
| 12/14/2022 | 0        | 0                  | 0         | 100          |
| 12/15/2022 | 0        | 0                  | 0         | 100          |
| 12/16/2022 | 0        | 0                  | 0         | 100          |
| 12/17/2022 | 0        | 0                  | 0         | 100          |
| 12/18/2022 | 0        | 0                  | 0         | 100          |
| 12/19/2022 | 0        | 0                  | 0         | 100          |
| 12/20/2022 | 0        | 0                  | 0         | 100          |
| 12/21/2022 | 0        | 0                  | 0         | 100          |
| 12/22/2022 | 0        | 0                  | 0         | 100          |
| 12/23/2022 | 0        | 0                  | 0         | 100          |
| 12/24/2022 | 0        | 0                  | 0         | 100          |
| 12/25/2022 | 0        | 0                  | 0         | 100          |
| 12/26/2022 | 0.2      | 1.72006            | 0.34401   | 99.656       |
| 12/27/2022 | 3.32     | 28.553             | 5.7106    | 94.2894      |
| 12/28/2022 | 0.22     | 1.89207            | 0.37841   | 99.6216      |
| 12/29/2022 | 0        | 0                  | 0         | 100          |
| 12/30/2022 | 0        | 0                  | 0         | 100          |
| 12/31/2022 | 0        | 0                  | 0         | 100          |

 Table 12 Rainfall Data with daily supplementation for the month of December, 2022

## **CHAPTER IV**

# Data Analysis and Result Discussion

## 4.1 Monthly Rainwater Harvesting:

| Month     | Average<br>Rainfall (mm) | Probable<br>Harvested<br>Rainwater(m <sup>3</sup> ) | %<br>Harvested<br>Rainwater | %<br>Pumped Ground<br>Water |
|-----------|--------------------------|-----------------------------------------------------|-----------------------------|-----------------------------|
| January   | 8.701                    | 74.83                                               | 0.499                       | 99.50                       |
| February  | 15.8195                  | 136.05                                              | 0.907                       | 99.09                       |
| March     | 51.1515                  | 439.92                                              | 2.933                       | 97.067                      |
| April     | 167.9455                 | 1444.38                                             | 9.629                       | 90.371                      |
| May       | 309.3825                 | 2660.78                                             | 17.74                       | 82.26                       |
| June      | 385.595                  | 3316.23                                             | 22.11                       | 77.89                       |
| July      | 403.0575                 | 3466.42                                             | 23.11                       | 76.89                       |
| August    | 332.7725                 | 2861.94                                             | 19.08                       | 80.92                       |
| September | 270.153                  | 2323.40                                             | 15.49                       | 84.51                       |
| October   | 167.809                  | 1443.21                                             | 9.62                        | 90.38                       |
| November  | 29.0995                  | 250.26                                              | 1.668                       | 98.332                      |
| December  | 19.622                   | 168.76                                              | 1.125                       | 98.875                      |

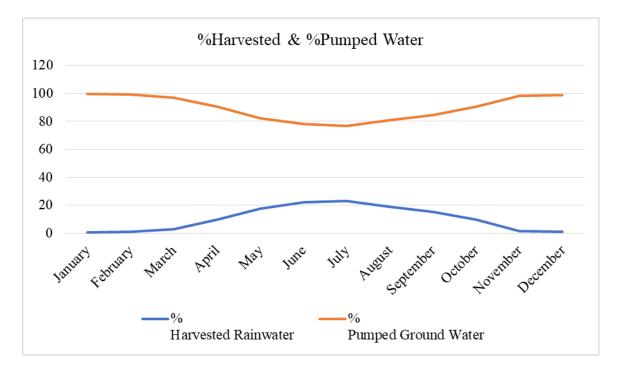



Figure 7 Harvested and Pumped Groundwater

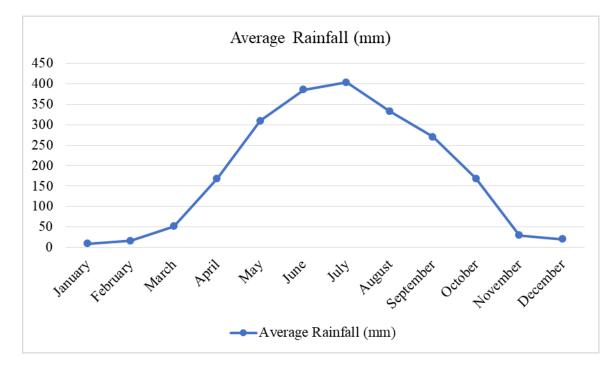



Figure 8 Average Rainfall (mm)

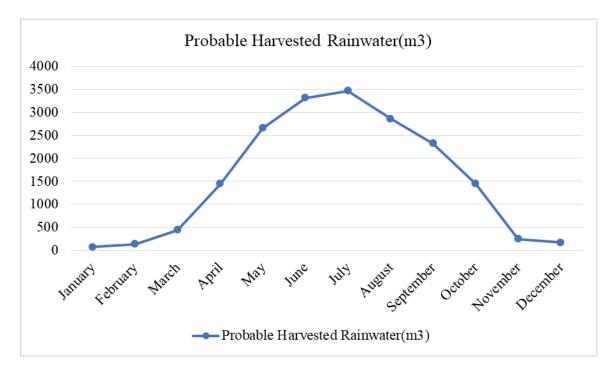



Figure 9 Probable Harvested Rainwater (m<sup>3</sup>)

#### 4.2 Daily Rainwater Harvesting:

| A Particular | Average<br>Rainfall | Probable<br>Harvested | %<br>Harvested | %<br>Pumped Ground |  |
|--------------|---------------------|-----------------------|----------------|--------------------|--|
| Day in       | ( <b>mm</b> )       | Rainwater(m3)         | Rainwater      | Water              |  |
| January      | 0.280677419         | 2.41391001            | 0.482782002    | 99.517218          |  |
| February     | 0.564982143         | 4.859015923           | 0.971803185    | 99.02819682        |  |
| March        | 1.650048387         | 14.19091114           | 2.838182229    | 97.16181777        |  |
| April        | 5.598183333         | 48.14605612           | 9.629211224    | 90.37078878        |  |
| May          | 9.980080645         | 85.83168757           | 17.16633751    | 82.83366249        |  |
| June         | 12.85316667         | 110.5410893           | 22.10821786    | 77.89178214        |  |
| July         | 13.00185484         | 111.8198522           | 22.36397043    | 77.63602957        |  |
| August       | 10.73459677         | 92.32075264           | 18.46415053    | 81.53584947        |  |
| September    | 9.0051              | 77.44656153           | 15.48931231    | 84.51068769        |  |
| October      | 5.413193548         | 46.55508847           | 9.311017695    | 90.68898231        |  |
| November     | 0.969983333         | 8.342147662           | 1.668429532    | 98.33157047        |  |
| December     | 0.632967742         | 5.443712471           | 1.088742494    | 98.91125751        |  |

Table 13 Daily Rainwater Supplementation on any month

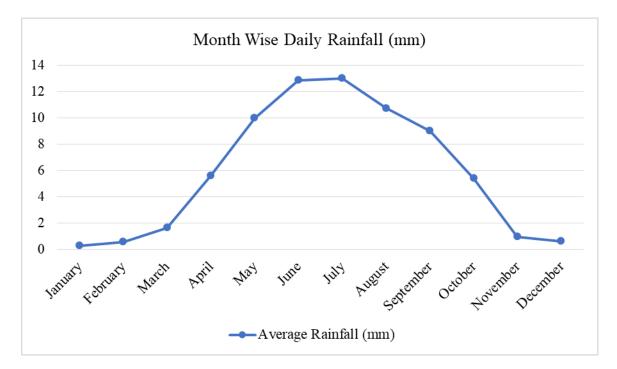



Figure 10 Month Wise Daily Rainfall (mm)

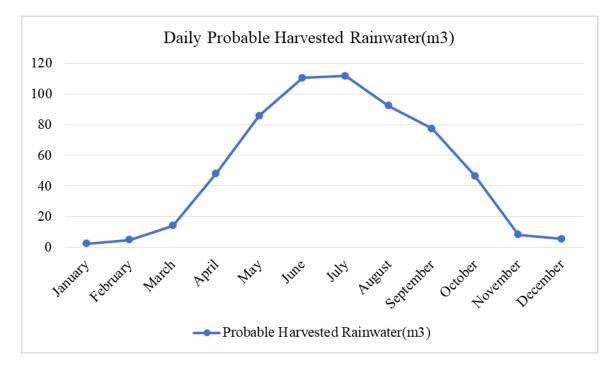



Figure 11 Daily Probable Harvested Rainwater (m<sup>3</sup>)

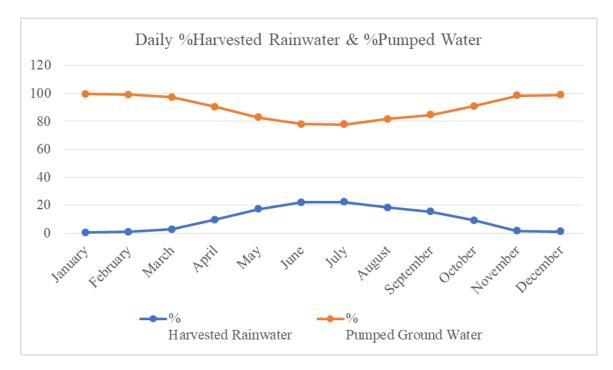



Figure 12 Daily Harvested Rainwater and Pumped Water (In Percentage)

#### 4.3 R-Model Analysis:

Using daily rainfall data from RStudio, you would normally follow a basic data analysis and modeling procedure to create a rainwater collection model. An overview of the procedures is provided below:

1. Data Import: Enter into RStudio the daily rainfall data. The data may be in a database, CSV, Excel, or another format. To load the data into a suitable data structure, such as a data frame, use the necessary R functions or packages.

2. Data Preprocessing: Execute the required data cleaning and preparation preprocessing operations. This might entail addressing missing numbers, finding outliers, transforming the data, and performing data quality checks.

3. Exploratory Data Analysis (EDA): Analyze the data to learn more about it and discover its features. Identifying patterns, trends, and seasonality in the rainfall data may be done by using summary statistics, data visualization (plots, histograms, etc.), and pattern recognition software.

4. Feature Engineering: Determine any extra traits or variables that might improve our model's ability to forecast the future. Aggregating rainfall data over time, extracting temporal or geographical patterns, or factoring in outside factors like temperature or location are all examples of how to do this.

5. Model Selection: Depending on our unique goals and the qualities of our data, pick a suitable modeling approach. Simple regression models to more complex techniques like time series analysis or machine learning algorithms can be used.

6. Model Development: Using the given data, create and train our preferred model. This includes defining the model's structure, determining its parameters, and assessing the model's effectiveness.

7. Model Deployment and Prediction: Once we have a model that works well, we can use it to create forecasts based on fresh or previously unreported rainfall data. This helps us to predict future rainfall patterns or calculate pertinent metrics for rainwater collecting, including the amount of water available or the amount of storage needed.

## 4.3.1 Rainfall Data Coding and Analysis

| R raint                                   | fall - RStudio                                                                                                                             |       |                    |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------|
| File E                                    | dit Code View Plots Session Build Debug Profile Tools Help                                                                                 |       |                    |
| 0 - 0                                     | 🔋 🚰 🖬 🔚 🔚 🌗 Go to file/function 👘 🗄 👻 Addins 👻                                                                                             |       |                    |
| 🔍 Unt                                     | tied1* × data ×                                                                                                                            |       | -0                 |
| $\langle \Rightarrow \Rightarrow \rangle$ | 🔊 🔚 🖸 Source on Save 🔍 🎢 📲                                                                                                                 | + Run | 🍽 🕆 😓 🕞 Source 🔹 🗎 |
|                                           | #Analysing daily railfall data                                                                                                             |       | A                  |
|                                           | data<- read.csv(file.choose(),header=T,sep=",")<br>View(data)                                                                              |       |                    |
| 4                                         | #packages                                                                                                                                  |       |                    |
|                                           | library(ggplot2)<br>library(dplyr)                                                                                                         |       |                    |
|                                           | library(lubridate)                                                                                                                         |       |                    |
| 8                                         | library(forecast)                                                                                                                          |       |                    |
|                                           | library(HydroMe)<br>library(HydroTSM)                                                                                                      |       |                    |
|                                           | install.packages("zoo")                                                                                                                    |       |                    |
| 12                                        | install.packages("xts")                                                                                                                    |       |                    |
|                                           | library(zoo)                                                                                                                               |       |                    |
|                                           | library(xts)<br>library(hydroplot)                                                                                                         |       |                    |
| 16                                        | library(sna)                                                                                                                               |       |                    |
|                                           | #Preparing data for analysis                                                                                                               |       |                    |
|                                           | data\$Rainfall<-as.numeric(data§Rainfall)<br>Rainfall_Data <-ts(data§Rainfall,frequency=365)                                               |       |                    |
|                                           | #Time series plot                                                                                                                          |       |                    |
|                                           | plot(Rainfall_Data)                                                                                                                        |       |                    |
|                                           | #Decompose<br>DRD<-decompose(Rainfall_Data)                                                                                                |       |                    |
| 24                                        | plot(DRD)                                                                                                                                  |       |                    |
|                                           | #Fitting an ARIMA Model                                                                                                                    |       |                    |
|                                           | fitmr<-auto.arima(Rainfall_Data)<br>fitmr                                                                                                  |       |                    |
| 28                                        | #Forecast                                                                                                                                  |       |                    |
|                                           | pred<-forecast(fitmr,10*365)                                                                                                               |       |                    |
|                                           | autoplot(pred,PI=T)<br># Define the study area                                                                                             |       |                    |
| 32                                        | catchment_area <- 10118 # m2                                                                                                               |       |                    |
|                                           | # Determine the storage capacity                                                                                                           |       |                    |
|                                           | storage_capacity <- catchment_area * 0.5 # m3<br># Calculate the water budget                                                              |       |                    |
| 36                                        | P <- data\$Rainfall                                                                                                                        |       |                    |
|                                           | # Print model summary                                                                                                                      |       |                    |
|                                           | summary(fitmr)<br>Date.data<-strptime(data\$Date,format = "%m/%d/%Y")                                                                      |       |                    |
|                                           | Date.data                                                                                                                                  |       |                    |
|                                           | Dates.data<- format(Date.data, "%m/%d/%y")                                                                                                 |       |                    |
|                                           | data.daily<- aggregate(data\$Rainfall, by=list(Dates.data), FUN=sum)<br>names(data.daily)                                                  |       |                    |
| 44                                        | names(data.daily)<- c("Dates.data", "Rainfall")                                                                                            |       |                    |
| 45                                        | data.daily\$Dates.data=as.Date(data.daily\$Dates.data,"%m/%d/%v")<br>plot(Date.data,data\$Rainfall, xlab = "Year", ylab = "Precipitation") |       |                    |
|                                           | data.daily.ts=zoo(data.daily\$Rainfall,order.by = data.daily\$Dates.data)                                                                  |       |                    |
| 48                                        | head(data.daily.ts)                                                                                                                        |       |                    |
| 49<br>50                                  | data.daily.ts<br>plot(data.daily.ts, xlab = "Year", ylab = "Precipitation")                                                                |       |                    |
| 51                                        | plot(data.daily.ts,var.type = "Precipitation",var.unit = "mm", xlab = "Time", ylab = "Precipitation(mm)")                                  |       |                    |
| 52                                        | , , , , , , , , , , , , , , , , , , ,                                                                                                      |       |                    |
| 53<br>54                                  |                                                                                                                                            |       |                    |
| 54                                        |                                                                                                                                            |       |                    |
| 53:1                                      | (Top Level) \$                                                                                                                             |       | R Script \$        |
| 2341                                      | (inhered A                                                                                                                                 |       | K Script \$        |

Figure 13 Coding used in Rstudio

## 4.3.2 Data Set:

|                                 | - 0 ×                                                                                   |  |  |  |  |  |
|---------------------------------|-----------------------------------------------------------------------------------------|--|--|--|--|--|
|                                 |                                                                                         |  |  |  |  |  |
|                                 | I rainfall                                                                              |  |  |  |  |  |
| Environment History Connections | Tutorial                                                                                |  |  |  |  |  |
| 🕣 📊 🖙 Import Dataset 🔹 🌗 164 N  | лів • 🖌 📃 List • 🕲                                                                      |  |  |  |  |  |
| R 🔹 💼 Global Environment 👻      | Q,                                                                                      |  |  |  |  |  |
| Data                            |                                                                                         |  |  |  |  |  |
| 🖸 data                          | 7670 obs. of 2 variables                                                                |  |  |  |  |  |
| 🚺 data.daily                    | 7670 obs. of 2 variables                                                                |  |  |  |  |  |
| 🚺 Date. data                    | POSIXlt[1:7670], format: "2002-01-01" "2002-01-02" "2002-01-03" "2002-01-04" "2002-01 Q |  |  |  |  |  |
| 🚺 DRD                           | List of 6 Q                                                                             |  |  |  |  |  |
| 🖸 fitmr                         | List of 18 Q                                                                            |  |  |  |  |  |
| 🚺 pred                          | List of 10 Q                                                                            |  |  |  |  |  |
| Values                          |                                                                                         |  |  |  |  |  |
| catchment_area                  | 10118                                                                                   |  |  |  |  |  |
| data.daily.ts                   | 'zoo' num [1:7670] 0 0 0 0 0 0 0 0 0 0 0 0                                              |  |  |  |  |  |
| D Dates.data                    | Large character (7670 elements, 552.3 kB)                                               |  |  |  |  |  |
| Р                               | num [1:7670] 0 0 0 0 0 0 0 0.08 0 0                                                     |  |  |  |  |  |
| Rainfall_Data                   | Time-Series [1:7670] from 1 to 22: 0 0 0 0 0 0 0 0 0 0 0 0 0                            |  |  |  |  |  |
| RD                              | Time-Series [1:7670] from 1 to 22: 0 0 0 0 0 0 0 0 0 0 0 0 0                            |  |  |  |  |  |
| storage_capacity                | 5059                                                                                    |  |  |  |  |  |

#### Figure 14 Data Set in Rstudio

## **4.3.2 Time Series Data Plot:**

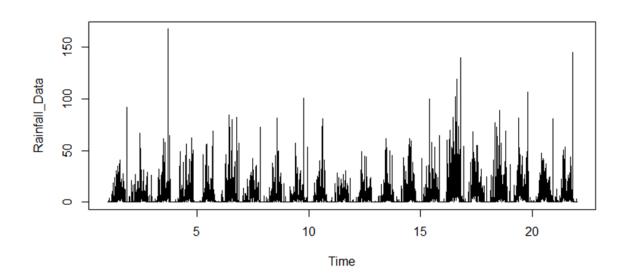



Figure 15 Time Series Data Plot

## **4.3.3 Decomposition of additive time series:**

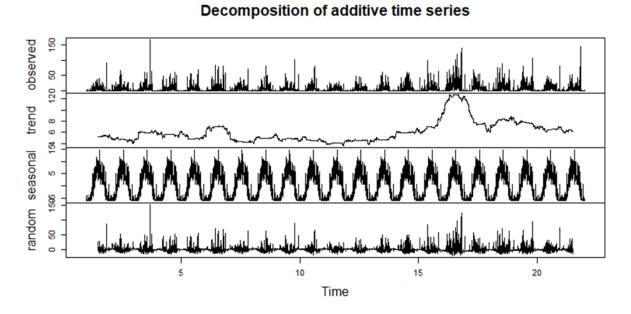



Figure 16 Decomposition of additive time series

### 4.3.4 Precipitation Data Chart:

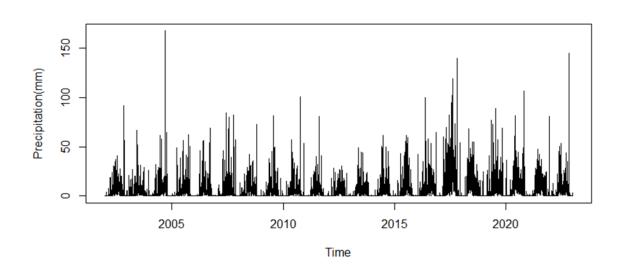
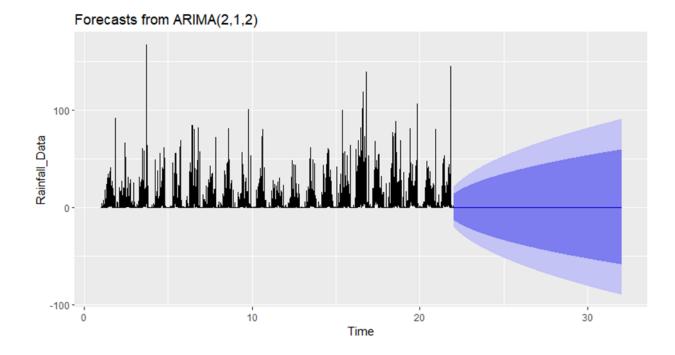




Figure 17 Precipitation Data Chart

#### 4.3.5 Rainfall Forecast for Next 10 Years:



For carrying out these stages, RStudio offers a comfortable environment that enables you to develop and run R code, visualize data and findings, and arrange your research in a repeatable way. Additionally, it provides a number of tools and packages that may help with data pretreatment, modeling, and visualization.

### **CHAPTER V**

#### CONCLUSIONS AND RECOMMENDATIONS

The study describes the variation in rainfall and its impact on water supplementation throughout the year on a daily basis in IUT. During the dry season which could be a period of little rainfall the supplementation of water is relatively low. This suggests that the natural rainfall may not be sufficient to meet the daily water demand, and additional supplementation is required for most of the use case. November through December sees virtually little supplementing to the actual demand. The supplementation amount during April and October is low. In May, August and September months moderate amount of supplementation ranging upto 20% to the daily water demand. In the months of June and July up to one-fourth of total water demand can be supplemented using harvested rainwater as plenty of rainfall occurs in this time period.

In summary, research on rainwater harvesting model development demonstrates its potential as a sustainable water management solution. However, further studies and practical applications are necessary to refine the models, address challenges, and promote widespread adoption to realize the full benefits of rainwater harvesting.

#### REFERENCES

Islam, M. Rafiqul. "Rainfall in Bangladesh: Is Rainwater Harvesting a Sustainable Approach for Governing Rainwater?" European Journal of Sustainable Development, vol. 8, no. 5, 1 Oct. 2019, p. 433, 10.14207/ejsd.2019.v8n5p433.

Hussain, and Ziauddin. "Rainwater Harvesting and Storage Techniques from Bangladesh." Waterlines, vol. 10, no. 3, Jan. 1992, pp. 10–12, 10.3362/0262-8104.1992.003. Accessed 23 Mar. 2021.

https://earth.google.com/web/@23.94776829,90.37891661,13.25911104a,519.80392813 d,35y,-4.65528182h,0.08792385t,0r

https://images.app.goo.gl/Fta7CbF8FKdei9Qg7

Bangladesh National Building Code (BNBC-2020)

Akter, Aysha, and Shoukat Ahmed. "Potentiality of Rainwater Harvesting for an Urban Community in Bangladesh." Journal of Hydrology, vol. 528, Sept. 2015, pp. 84–93, 10.1016/j.jhydrol.2015.06.017. Accessed 23 Mar. 2021.

Ahmed, Musfique, et al. OPPORTUNITIES and LIMITATIONS in PRACTICING RAINWATER HARVESTING SYSTEMS in BANGLADESH Waves of the Future: Capacity Building for the Rising Tide of STEM in WV through Gravitational Wave Astronomy and the Appalachian Freshwater Initiative View Project MSc Dissertation View Project. 4 Sept. 2013.

https://power.larc.nasa.gov/data-access-viewer

Ahmed, M.F. (1999), "Rainwater harvesting potential in Bangladesh", Proceedings of the 25th WEDC Conference: Integrated Development for Water Supply and Sanitation, Addis Ababa, pp 363 – 365

Husna, Asma, and Md Rahman. "Potentials of Rainwater Harvesting as an Alternative Water Supply System in Dhaka City." Journal of Scientific Research and Reports, vol. 13, no. 6, 10 Jan. 2017, pp. 1–7, 10.9734/jsrr/2017/31866. Accessed 1 Nov. 2020.

Bosu, Sudipto & Nupur, Shanjida & Towsif Khan, Sami. (2015). Sustainable Utilization of Rainwater Harvesting in Dhaka.

Seraj TM, Islam MA, MahidY. Potentiality of rainwater harvesting as a source of rainwater supply system. World Town Planning Day 2012 BIP Souvenir.2012;9-18

Mortuza MR. Potentiality of rainwater harvesting in Dhaka: A greener approach. International Conference on Environmental Technology and Construction Engineering for Sustainable Development. Sylhet: SUST, 2011;5.