ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) DEPARTMENT OF NATURAL SCIENCES

Mid Semester Examination
Course Number: Math 4111
Course Title: Modelling with calculus and ODE

Winter Semester: 2022-2023
Full Marks: 75
Time: 1.5 Hours

There are 3 (three) questions, Answer all questions. The symbols have their usual meanings. Marks of each question and corresponding CO and PO are written in the brackets.

1. a) (i) An open box of maximum volume is to be made from a square piece of material 24 centimeters on a side by cutting equal squares from the comers and turning up the sides shown in Fig. Q1 (a), Write volume V as a function of x, the length of the comer squares and find the domain of the function $V(x)$.

Fig. Q1(a)
(ii) Sketch a graph of the following function and discuss its continuity at $x=0$.

$$
f(x)=\left\{\begin{array}{cl}
-2 x+1 ; & x<0 \\
0 ; & 0 \leq x<1 \\
2 x-1 ; & x \geq 1
\end{array}\right.
$$

b)
(i) Graph of $h(x)=\left|-\frac{x}{2}\right|+x^{2}$ is shown in Fig. Q1(b). Find the limit of h (if it
exists) using the graph at point $x=1$ and $x=2$. If the limit does not exist,explain why.

Fig. Q1(b)
(ii) Applying Sandwich theorem, evaluate the following limit.

$$
\begin{equation*}
\lim _{x \rightarrow \infty}\left(\frac{2 x^{2}+\cos 3 x}{3 x^{2}+5}\right) \tag{7}
\end{equation*}
$$

2. a)
(i) Determine the slope of the graph of $3\left(x^{2}+y^{2}\right)^{2}=100 x y$ at the point $(3,1)$.

A utility company burns coal to generate electricity. The cost C in dollars of removing p\% of the air pollutants in the stack emissions modeled by the following function.

$$
C(p)=\frac{80,000 p}{100-p} ; 0 \leq p<100 .
$$

(ii) Find the cost of removing $q \%$ of the pollutants where q is the last two digits of your student ID.
(iii) Find the limit of C as p approaches 100 from the left and interpret its meaning.
b) The endpoints of a movable rod of length 1 meter have coordinates $(x, 0)$ and $(0, y)$ presented in Fig. Q3(b). The position function of the end on the x-axis is $x(t)=\frac{1}{2} \sin \frac{\pi t}{6}$, where t is the time in seconds.

Fig. Q3(b)
(i) Find the time of one complete cycle of the rod.
(ii) What is the lowest point reached by the end of the rod on the y-axis?
(iii) Find the speed of the y-axis endpoint when the x-axis endpoint is $\left(\frac{1}{4}, 0\right)$
3. a) Suppose the velocity in meters/second of an object moving along a line is given by the function $v(t)=t^{3}-6 t$, where $0 \leq t \leq 3$. Approximate the displacement of the object by dividing the time interval $[0,3]$ into 6 sub-intervals of equal length.
(i) Estimate the velocity by a constant equal to the value of v evaluated at the tight endpoints of the subinterval.
(ii) Sct up an expression for $\int_{0}^{3}\left(t^{3}-6 t\right) d t$ as a limit of sums.
(iii) Use a computational algebra system to evaluate the expression.
b) (i) Let R be the region bounded by loop of the curve $a^{7} y^{2}=x^{3}(2 a-x)$. Find the area of the region R.
(ii) Apply the integral formula to find the volume of the solid generated by revolving the regions bounded by $y=3 \sin 2 x, 0 \leq x \leq \frac{\pi}{2}$ about the x-axis,

