DEPARTMENT OF MECHANICAL AND PRODUCTION ENGINEERING

Mid Semester 1 :xamination

Course No., Math 4511
Course Title: Numerical Analysis

Winter Semester: A.Y. 2022-2023
Time: I hour and 30 minutes Full Marks: 75

There are 3 (Three) Questions. Answer all of them.
Marks in the Margin indicate full marks. Programmable calculators are not allowed. Assume reasonable values for any missing data(if any).

1. a) The Manning equation can be written for a rectangular open channel as

$$
Q=\frac{\sqrt{S}(B H)^{5 / 3}}{n(B+2 H)^{2 / 5}}
$$

Where, $Q=$ flow $\left[\mathrm{m}^{3} / \mathrm{s}\right], S=$ slope $[\mathrm{m} / \mathrm{m}], H=$ depth $[\mathrm{m}], B=$ width $[\mathrm{m}]$ and $\mathrm{n}=$ the Manning roughness coefficient. Solve this equation for H. Given $Q=5,5=0,0002, B=$ 20 , and $\pi=0.03$.
Use three iterations of the Newton-Raphson method to determine your answer. Determine the approximate relative error after each iteration.
b) Consider the following optimization problem.

$$
f(\mathrm{x})=5 x_{1}^{2}+x_{2}^{2}+4 x_{1} x_{2}-14 x_{1}-6 x_{2}+20
$$

It's corresponding graph is given in Figure 1. Implement Gradient Descent method with $\eta=0.09$ to find optimal \mathbf{x}, perform two iterations.

Figure 1: Graph of the function stated in Question 1(b)

The equations of the curve and the ellipse, which are shown in the Figure 2, are given by

$$
\begin{aligned}
& f_{1}(x, y)=y-\frac{1}{2}\left(e^{\frac{x}{2}}+e^{\frac{-x}{2}}\right)=0 \\
& f_{2}(x, y)=9 x^{2}+25 y^{2}-225=0
\end{aligned}
$$

Use Newton's method to determine the point of intersection of the curves that resides in the first quadrant of the coordinate system.
Perform three iterations.

Figure 2: Plot of functions stated in Question 2
3. a) The deflection of a uniform beam subject to a linearly increasing distributed load can be computed as

$$
\begin{equation*}
y=\frac{w_{0}}{120 E X L}\left(-x^{5}+2 L^{2} x^{3}-L^{4} x\right) \tag{13}
\end{equation*}
$$

Given that $Z=600 \mathrm{~cm}, E=50,000 \mathrm{kN} / \mathrm{cm}^{2}, ~ I=30,000 \mathrm{~cm}^{4}$, and $w_{0}=2.5 \mathrm{kN} / \mathrm{cm}^{2}$, determine the point of maximum deflection using the golden-section search. Perform three iterations with initial guesses of $x_{1}=0$ and $x_{u}=L$.
b) The following data present the power of a diesel engine at different engine speeds:

Fingine Speed (rpm)	1200	1500	2000	2500
Engine Power (hp)	65	130	185	225

Forming the Lagrange Interpolating Polynomial among the data points, estimate the engine power at speed of 2300 rpm .

