ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

DEPARTMENT OF MECHANICAL AND PRODUCTION ENGINEERING

Mid Semester Examination
Course No.: IPE 4513
Course Title: CAD/CAM/CAE

Winter Semester, A. Y. 2022-2023
Time: 1 Hours $30 \mathrm{Min}(\mathrm{s})$
Full Marks: 75

There are 3 (Three) questions. Answer all the questions.
Marks of each question and corresponding CO and PO are written in the brackets. Do not write on this question paper.

1. a) Draw a flow diagram of design processes involved in a product cycle and describe its steps.
b) Classify and describe different types of orthographic projections with necessary illustration.
2. a) There are two coordinate systems $X_{1} Y_{1} Z_{1}$ and $X_{2} Y_{2} Z_{2}$, where Z_{2} is opposite of Y_{1}, X_{2} is parallel with Z_{l}, and Y_{2} is opposite of X_{l}. The origin O_{2} when measured in $X_{I} Y_{i} Z_{i}$ is $(7,5,0)$. The $X_{1} Y_{l} Z_{l}$ coordinates of point P is $(3,0,2)$.
(i) With respect to $X_{l} Y_{l} Z_{l}$, using the standard $\operatorname{Rot}(x, \theta), \operatorname{Rot}(y, \theta), \operatorname{Rot}(z, \theta)$ and Trans (a, b, c) to derive the transformation T^{*} that will transform the rigid body of $X_{2} Y_{2} Z_{2}$ to coincide with $X_{7} Y_{l} Z_{l}$.
(ii) Calculate $P^{*}=T^{*} \cdot\left[\begin{array}{llll}3 & 0 & 2 & 1\end{array}\right]^{T}$.
(iii) Is T^{*} the $T_{1 \rightarrow 2}$ or $T_{2 \rightarrow 1}$?
b) How is the Oct-tree representation computed? Explain why the octree representation requires less memory space than the voxel repetition for the same resolution.
3. a) For a non-periodical and uniform B-spline curve of order 3 defined by the control points $\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}$, and P_{3}. There are two independent curves comprising this B -spline, each defined on the parameter range $u \in[0,1]$ and $u \in[1,2]$ respectively. Expand the B-spline curve equation to get the equation of the second segment.
b) How do you mcasure the degree "smoothness" of a curve? What is the minimum acceptable curve for engineering design and why?
