# ISLAMIC UNIVERSITY OF TECHNOLOGY (JUT) 

# ORGANISATION OF ISLAMIC COOPIRATION (ORC) DEPARTMENT OF MECHANICAL AND PRODUCTION ENGINEERING 

Mid Semester Examination
Course No.: ME 4703
Course Title: Noise and Vibration

Winter Semester: A.Y. 2022-2023
Time: 1 hour and 30 minutes Full Marks: 75

There are 3 (Three) Questions. Answer all of them.
Marks in the Margin indicate full marks. Programmable calculators are not allowed.
Assume reasonable values for any missing data(if any).

1. a) The landing gear of an airplane can be idealized as the spring-mass-damper system [13] shown in Figure 1. If the runway surface is described by $y(t)=y_{0} \cos \omega t$, COl, determine the values of $k$ and $c$ that limit the amplitude of vibration of the airplane PO4/PO2 $(x)$ to 0.1 m . Assume $m=2000 \mathrm{~kg}, y_{0}=0.2 \mathrm{~m}$, and $\omega=157.08 \mathrm{rad} / \mathrm{s}$.


Figure 1. Modeling of landing gear
b) A turbine rotor is mounted on a stepped shaft that is fixed at both ends as shown in

Figure 2. The torsional stiffnesses of the two segments of the shaft are given by $k_{11}=3000 \mathrm{~N}-\mathrm{m} / \mathrm{rad}$ and $k_{2}-4000 \mathrm{~N}-\mathrm{m} / \mathrm{rad}$. The turbine generates a harmonic torque given by $M(t)=M_{0}$ cos $\omega t$ about the shaft axis with $M_{0}=200 \mathrm{~N}-\mathrm{m}$ and $\omega=500$ $\mathrm{rad} / \mathrm{s}$. The mass moment of inertia of the rotor about the shaft axis is $.50 .05 \mathrm{~kg}-\mathrm{m}^{2}$ Assuming the equivatent torsional damping constant of the system as $a=25 \mathrm{~N}$ -in-siad, determine the steady-state response of the rotor, $\theta(t)$


Figure 2
2. a) For the system Shown in Figure 3, calculate $x_{1}(t)$ and $x_{2}(t)$ for the following initial conditions:

$$
x_{1}(0)=0.2, \dot{x}_{1}(0)=x_{2}(0)=\dot{x}_{2}(0)=0
$$

Consider, $m_{1}=m_{2}=1 \mathrm{~kg}, k_{1}=2000 \mathrm{~N} / \mathrm{m}$, and $k_{2}=6000 \mathrm{~N} / \mathrm{m}$.


Figure 3
b) A machine tool, having a mass of $m=1000 \mathrm{~kg}$ and a mass moment of inertia of $J_{0}$ of the supports are given by $k_{1}=3000 \mathrm{~N} m$ mand $k_{2}=2000 \mathrm{~N} / \mathrm{mm}$, and the supports are located at $l_{1}=0.5 \mathrm{~m}$ and $h_{2}=0.8 \mathrm{~m}$. find the mode shapes of the machine tool


Figure 4
3. a) Consider the following single-degrec-of-freedom system with a viscous damper in Figure 5. Forming the equation of motion for the system, derive the solutions for Underdamped, Crifically Damped and Overdamped Vibration.


Figurc. 5
b) $A$ cylinder of mass $m$ and mass moment of inertia $J_{0}$ is free to roll without slipping but is restrained by two springs of stifficsses $k_{1}$ and $k_{2}$, as shown in Figure 6. Use the energy method to find the natural frequency of vibration of the system.


Figure 6

