

Program: B. Sc. Engg, (IPE) Semester: 7th Date: 03 October 2023 Time: 02.30 pm to 04.00 pm (afternoon)

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) DEPARTMENT OF MECHANICAL AND PRODUCTION ENGINEERING

Mid-Semester Examination Course Number: IPE 4709 Course Title: Product Design II Winter Semester: 2022-2023 Full Marks: 75 Time: 1 hour and 30 mins

Answer all the 3 (three) questions below. The distribution of marks and the CO-PO mapping are given in brackets. Necessary formula and table are attached.

- QI. (a) A cellphone company is planning to launch a new series of cellphone in the (6+2+3+4] next year. The company is now generating horizontal and vertical prototypes (CO3, PO2) to achieve the fidelity of the final product. Answer the following questions.
 - What does fidelity of prototype mean? Discuss briefly the different dimensions of fidelity.
 - When the cellphone prototype is just a paper prototype at the initial stage, what are the fidelity of the prototype for the different dimensions?
 - iii) What could be the possible arrangements as horizontal and vertical prototypes for the cellphone?
 - iv) How can the storyboarding tool be used for low-fi and high-fi prototypes of the cellphone?
 - (b) A part of a machine, which has a shiny outer surface, needs to be reverse [545] engineered. The laboratory has a noncontact scanner and Fused Deposition (CO3, PO2) Modeling (FDM) and Selective Laser Sintering (SLS) additive manufacturing technologies.
 - Describe with a schematic representation the scanning method used in such a scenario.
 - ii) Write down five differences between the FDM and SLS methods.
- Q2. (a) Describe seven principles of Design For Assembly (DFA). Draw the necessary schematic diagrams for illustration. (COL, POI)
 - (b) The useful life of the product can be extended with a proper Design For [6] Disassembly (DFD). Illustrate and discuss the self-replenishing loops for DFD. (CO1, PO1)

Q3. (a) A company is planning to buy a machine. There are two alternatives of buying in. The following information of the alternatives have been provided. (<u>Alternative.</u>]: Machine A has an initial cost of \$18,000, an annual operating cost of \$33,000 at al n expected salvage value of \$3,000 at the end of its 5-year service life.

<u>Alternative 2</u>: Machine B costs \$10,000 initially. With an economic life of 3 years and no salvage value, it has an annual operating cost of \$4,000. If the required rate of return is 15%, state which alternative is preferred when the alternatives are compared with

- Present worth
- o Annual cost
- (b) A section of a 25 mm diameter solid shaft shown in Figure 1 below is drawn. [18] from AIS1 1000 equenched and temperate al 800°C cardions tell of which the COURJ billion in the strength becomes 615 MHz. During service, the shaft encounters a benefiting moment that variation of us 40 NNs rate reliability of using the Coordman line. Assume that the fatigue stress concentration factors = 1 dee to the unserviced variation.

Figure 1. For Problem 3b.

Tables and Formulas

	Single Payments		Uniform Series Payments				Arithmetic Gradients	
а	F/P Compound Amount	P/F Present Worth	A/F Sinking Fund	F/A Compound Amount	A/P Capital Recovery	P/A Present Worth	P/G Gradient Present Worth	A/G Gradient Uniform Serier
	1.1500		1.00000	1.9900	1.15060	0.5496		
		0.7561						
	1.5209		0.28746		0.43796			
	1.7,290		0.20027				3.7865	
	2.0114	0.4972	0.14832		0.2993.2			1.7228
÷-								

Table 1. Discrete cash flow: compound interest factors for 15%

Table 2: Surface finish factor

Manufacturing	Factor e	Exponent /
Grinding Machining or cold drawing	1.58 4.51	-0.085 -0.265
Hot rolling As forged	57.7 272.0	-0.718 -0.995

Reliability factor: $k_r = 0.512 \left[ln \left(\frac{1}{R} \right) \right]^{0.33} + 0.508.$

Effect of Nonzero Mean Siress:
Gerber parabola:
$$\frac{K_I n_s \sigma_s}{S_s} + \left(\frac{n_s \sigma_{ss}}{S_{st}}\right)^2 = 1$$

Goodman line: $\frac{K_I \sigma_s}{S_s} + \frac{\sigma_{ts}}{S_{st}} = \frac{1}{n_s}$