ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

 DEPARTMENT OF MECHANICAL AND PRODUCTION ENGINEERING

Semester: Mid-Term Examination
Course Number: IPE 4715
Course Title: Material Handling and Maintenance Management

Winter Semester: 2022-2023
Full Marks: 75
Time: 1.5 Hours

There are 3 (THREE) questions: Answer 3 (THREE) questions. The symbols have their usual meanings. Marks of each question and the corresponding CO and PO are written in brackets. A formula sheet is provided at the end of this question paper. Show all steps and calculations.

1. a) Write down the difference between material handling and maintenance management.
b) Identify the three application areas of Fixed-Aisle Automated Storage/Retrieval Systems (AS/RS).
c) A planned fleet of forklift trucks has an average travel distance per delivery $=500 \mathrm{ft}$ loaded and an average empty travel distance $=350 \mathrm{ft}$. The fleet must make a total of 60 deliveries per hour. Load and unload times are each 0.5 min and the speed of the vehicles $=300 \mathrm{ft} / \mathrm{min}$. The traffic factor for the system $=0.85$. Availability $=0.95$, and worker efficiency $=90 \%$. Determine (a) The ideal cycle time per delivery, (b) The resulting average number of deliveries per hour that a forklift truck can make, and (c) How many trucks are required to accomplish the 60 deliveries per hour.
2. a) Explain why the angle of repose, bulk weight, lump size, moisture content, and flowability of particles are crucial characteristics when dealing with bulk material in material handling.
b) A closed-loop overhead conveyor must be designed to deliver parts from one load station to one unload station. The specified flow rate of parts that must be delivered between the two stations is 300 parts/hr. The conveyor has carriers spaced at a center-to-center distance that is to be determined. Each carrier holds one part. Forward and return loops will each be 90 m long. Conveyor speed $=0.5 \mathrm{~m} / \mathrm{sec}$. Times to load and unload parts at the respective stations are each $=12 \mathrm{sec}$. Is the system
(10 Marks)
feasible and if so, what is the appropriate number of carriers ard spacing between carriers that will achieve the specified flow rate?
3. a) What are the different eutegories of materials handling equipment used in manufacturing and warchouse facilities and explain briefly the different types of industrial trucks available with an appropriate diagram.
b) A recirculating conveyor has a total length of 700 ft and a speed of 90 $\mathrm{ft} / \mathrm{min}$. Spacing of part carriers $=14 \mathrm{ft}$. Each carrier holds one part. Automated machines load and unload the conveyor at the load and unload stations. The time to load a part is 0.10 min and the unload time is the same. To satisly production requirements, the loading and unloading rates are cach 2.0 parts per minute. Evaluate the conveyor system design with respect to the three principles developed by Kwo.

FORMULA SHEET

$W L=R_{f} T_{c}$
$A T=60 A F_{I} E_{v}$
$n_{c}=\frac{W L}{A T}=\frac{R_{f}}{R_{d x}}$
$T_{c}=T_{L}+\frac{L_{d}}{v_{c}}+T_{U}+\frac{L_{e}}{v_{c}}$
$R_{f}=R_{L}=\frac{v_{c}}{s_{c}} \leq \frac{l}{T_{L}}$
$n_{c}=\frac{L_{d}+L_{c}}{s_{c}} ; N_{p}=\frac{n_{p} L_{d}}{s_{c}}=\frac{n_{p} n_{c} L_{d}}{L_{d}+L_{e}} ; \quad R_{f}=\frac{n_{p} v_{c}}{s_{c}} \leq \frac{n_{p}}{T_{L}} ; s_{c}=v_{c} T_{L}$
$\frac{n_{p} v_{c}}{s_{c}} \geq \operatorname{Max}\left\{R_{L}, R_{u}\right\} ; \frac{v_{c}}{s_{c}} \leq \operatorname{Min}\left\{\frac{1}{T_{L}}, \frac{1}{T_{U}}\right\} ; \quad \frac{n_{p} v_{c}}{s_{c}} \geq R_{f}$

