

Program: B. Sc. Engg. (IPE)

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

DEPARTMENT OF MECHANICAL AND PRODUCTION ENGINEERING

Winter Semester: 2022-2023 Course Number: IPE 4785 Full Marks: 75 Course Title: Reliability and Maintenance Engineering Time: I hour and 30 mins

Answer all the 4 (four) questions below. The distribution of marks and the CO-PO mapping are given in brackets. Necessary formula and table are attached.

- O1. Draw a step curve and indicate MTTF, MTTR, mean time between failures (MTTB) and availability.
- Q2. A washing machine is advertised as having more than a 9-yr life. If the following ie ite PDE
 - (i) Find is the reliability of the machine for the third year?
 - (ii) Determine the design life if a 0.90 reliability is required.
 - (iii) Find the hazard rate function. Is it increasing or decreasing?
 - (iv)Determine its reliability for the next 7 years if it has survived a 1.5-yr
 - (v) Find its MTTF before the warranty period?
- (vi) Find its MTTF after the warranty period assuming it has still survived?
- O3. A hydraulic system experiences chance (CFR) failures with an MTTF of 1250 hr.
 - (i) The reliability for a 210-hr mission
 - (ii) The design life for a 0.90 reliability
 - (iii) The median time to failure (iv) If a second, redundant (and independent) component is added, find again
 - the reliability for a 210-hr mission and determine how much the reliability has been improved due to the addition of the redundant component. What will be the redundant system MTTF?
 - (v) If there are three spare components available, what will be the reliability for the 210-hr mission?
 - (vi) If the component has a guaranteed life of 100-hr, what will be the design life for a 0.90 reliability?

(CO2, PO1)

- lifetimes given by 10,500 hr, 13,500 hr, 18,500 hr, and 21,500 hr. (i) Find the MTTF of the engine. (ii) Determine the design life of the engine corresponding to a reliability of

04.

- (iv) If the jet engine is new, determine the probability of a component failure
 - (v) If the engine (with the components) has had 2000 hr of burn-in period
- accomplished, what is the probability of a component failure during the (vi) If all the components have equal scale parameter of 15,000 hr, find the
- reliability of the engine.

$$\begin{split} f(t) &= \frac{\theta}{\theta} \left(t^{\theta^{-1}} e^{(in\theta)^{\theta}} \right) \text{MTFF} = \theta \Gamma \left(1 + \frac{1}{\theta} \right)_{z^{\theta^{-1}}} e^{iz^{\theta^{-1}}} \left[\Gamma \left(t + \frac{z}{\theta} \right)_{z} \left[\Gamma \left(t + \frac{z}{\theta} \right)_{z} \right] \right] \\ \Gamma(x) &= (x - 1) \frac{1}{4}; \quad t_{R} = \theta \left(-\ln R \right)^{1/\theta}; \quad do. 50 = \theta \left(0.69315 \right)^{1/\theta} \\ t_{mode} &= \begin{cases} \theta (1 - 1/\theta)^{1/\theta} & \text{for } \beta > 1 \\ 0 & \text{for } \beta \leq 1 \end{cases} \end{split}$$

 $R(t \mid T_0) = \exp \left[-\left(\frac{t + T_0}{\theta}\right)^{\beta} + \left(\frac{T_0}{\theta}\right)^{\beta} \right]$

 $\lambda(t) = \frac{\beta r^{\beta-1}}{\sum_{l=1}^{s} \left(\frac{1}{\theta_l}\right)^{\beta}}, \quad \theta = \left[\sum_{l=1}^{s} \left(\frac{1}{\theta_l}\right)^{\beta}\right]^{-1/\beta}; \quad \lambda(t) = \frac{n\beta}{\theta^{\beta}}(t)^{\beta-1}$

 $t_{\text{med}} = t_0 + \theta(0.69315)^{1/\beta} \cdot t_R = t_0 + \theta(-\ln R)^{1/\beta}$

 $\lambda(t) = at^b$, $\lambda(t) = \frac{\beta}{\theta} \left(\frac{t}{\theta}\right)^{\beta-1}$, $R(t) = e^{-(n\theta)^b}$

 $R(t) = \exp \left[-n \left(\frac{t}{\theta} \right)^{\beta} \right]_{\text{, shape parameter } \beta_{\text{, scale parameter } \theta/n^{1/\beta}}.$

 $R_s(t) = 1 - [1 - R(t)]^2 \cdot R_s(t) = 2e^{-(t/\theta)^{\beta}} - e^{-2(t/\theta)^{\beta}}$ $MTTF = \theta \Gamma \left(1 + \frac{1}{\beta}\right) \left(2 - 2^{-1/\beta}\right) \cdot \lambda_s(t) = \frac{\beta}{\alpha} \left(\frac{t}{\alpha}\right)^{\beta - 1} \frac{2 - 2e^{-(t/\theta)\beta}}{2}$

 $R(t) = \exp \left[-\left(\frac{t - t_0}{\theta}\right)^{\beta} \right] \lambda(t) = \frac{\beta}{\theta} \left(\frac{t - t_0}{\theta}\right)^{\beta - 1} MTTF = t_0 + \theta \Gamma \left(1 + \frac{1}{\beta}\right)$

				Statistical and Numerical Tables 531			
TABLE A.9 Gamma function							
x	Tio		E(x)	x	F(x)	×	F(r)
1.01	.99433	1.51	.88659	2.01	1.00427	2.51	1.3387
1.02	.98884	1.52	.88704	2.02	1.00862	2.52	1.3483
1.03	.98355	1.53	.88757	2.03	1.01306	2.53	1.3579
1.04	.97844	1.54	.81818	2.04	1.01758	2.54	1.3677
1.05	.97350	1.55	.85587	2.05	1.02218	2.55	
1.06	.96874	1.56	.88964	2.06	1.02687	2.56	1.3878
1.07	.96415	1.57	.89049	2.07	1.03164	2.57	1.3980
1.08		1.58	.89142	2.08	1.03650	2.58	1.4084
1.09	.95546	1.59	.89343	2.09	1.04145	2.59	1.4189
	.95135	1.60	.89352	2.10	1.04649	2.60	1.4296
	.94740	1.61	.89458	2.11	1.05161	2.61	1.4404
1.12	.94359	1.62	.89592	2.12	1.05682	2.62	1.45140
1.13	.93993	1.63	.89724	2.13	1.06212	2.63	1.4625
1.14	.93642	1.64	.89864	2.14	1.06751	2.64	1.47377
1.15	.93304	1.65	.90012	2.15	1.07300	2.65	. 1.48519
1.16	.92980	1.66	.90167	2.16	1.07857	2.66	1.49677
1.17	.92670	1.67	.90330	2.17	1.08424	2.67	1.50851
1.18	.92373	1.68	.90500	2.18	1.09000	2.68	1.52040
	.92089	1.69	.90678	2.19	1.09585	2.69	1.53246
1.20	.91817	1.70	.90864	2.20	1.10180	2.70	1.54499
1.21	.91558	1.71	.91057	2.21	1.10785	2.71	1.55708
1.22	.91311	1.72	.91258	2.22	1.11399	2.72	1.56964
1.23	.91075	1.73	.91467	2.23	1.12023	2.73	1.58237
1.24	.90852	1.74	.91683	2.24	1.12657	2.74	1.59528
1.25	.90640	1.75	.91906	2.25	1.13300	2.75	1,60836
1.26	.90440	1.76	.92137	2.26	1.13954	2.76	1.62163
1.27	.90250	1.77	.92376	2.27	1.14618	2.77	1.63506
.28	.90072	1.78	.92623	2.28	1.15292	2.78	1.64868
.29	.89904	1.79	.92877	7.29	1.15976	2.79	1.66245
.30	.89747	1,80	.93138	2.30	1.16671	2.80	1.67645
.31	.89600	1.81	.93435	2.31	1.17377	2.81	1.69068
32	.89464	1.82	.93685	2.32	1.18093	2.82	1.70506
.33	.89338	1.83	.93969	2.33	1.18819	2.83	1.71963
.34	.89222	1.84	.94261	2.34	1.19557	2.84	1.73441
.35	.89115	1.85	.94561	2.35	1.20305	2.85	1.74938
36	.89018	1.86	.94869	2.36	1.21065	2.86	1.76456
.37	.88931	1.87	.95184	2.37	1.21836	2.87	1,77994
.38	.88854	1.88	.95507	2.38	1.22618	2.88	1.79553
.19	.88785	1.89	.95838	2.39	1.23412	2.89	1.81134
.40	.88726	1.90	.96177	2.40	1.24217	2.90	1.82736
41	.88676	1.91	.96523	2.41	1.25034	2.91	1.84359
42	.88636	1.92	.96877	2.42	1.25863	2.92	1.86005
43	.88604	1.93	.97240	2.43	1.26703	2.93	1.87673
44	.88581	1.94	.97610	2,44	1.27556	2.94	1.89363
.45	.88566	1.95	.97988	2.45	1.28421	2.95	1.91077
46	.88560	1.96	.98374	2.46	1.29298	2.96	1.92814
.47	.88563	1.97	.98769	2.47	1.30188	2.97	1.94534
.48	.88575	1.98	.99171	2.48	1.31091	2.98	1.96358
.49	.83595	1.99	.99581	2.49	1.32006	2.99	1.98167
.50	.88623	2.00	1	2.50	1.32934	3.00	2