		5
	-27	T.
2	2.1	
1		

B.Sc. in EEE, 1st Semester,

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

Course No : Math 4121

October 10, 2023 Morning

There are 3 (three) questions. Answer all 3 (three) questions. The symbols have their usual meanings. Programmable calculators are not allowed. Marks of each question and corresponding

L	a)	Identify the curve $16x^2 - 24xy + 9y^2 - 104x - 172y + 44 = 0$ and reduce it to standard form.	(12) (CO1) (PO1)
	b)	Differentiate $(x^1-1)y_1+2(1-n)xy_1-2ny=0~$ n times by Leibnitz theorem to find the relation between y_{n+2} , y_{n+1} and y_n .	(13) (CO2) (PO1)
2.	a)	$\begin{array}{ll} \mathrm{If} & u=(ax+by+cz)^1-(x^2+y^2+z^2) \mbox{ and } a^2+b^2+c^2=10 \mbox{ find the}\\ \mathrm{value} \mbox{ of } & \frac{\partial^2 u}{\partial z^2}+\frac{\partial^2 u}{\partial z^2}+\frac{\partial^2 u}{\partial z^2}-14 . \end{array}$	(12) (CO2) (PO1)
	b)	If the tangent at (x_1,y_1) to the curve $x^3 + y^3 = a^3$ meets the curve again in (x_2,y_2) , show that $\frac{x_2}{x_1} + \frac{y_2}{y_2} = -1$.	(13) (CO3) (PO2)

3. a) Find the altitude of the right cone of maximum volume that can be inscribed in a Find the radius of curvature of the curve $x^{\frac{3}{2}} + y^{\frac{3}{2}} = a^{\frac{3}{2}}$ at any point (x,y).