ISLAMIC UNIVERSITY OF TECHNOLOGY (HUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

Mid-Semester Examination
Course No.: Math +123
Course Title: Matrix and Differential Equations

Winter Semester, A. Y. 2022-2023
Time: 90 Minutes
Full Marks: 75

There are 3 (three) questions. Answer all 3 (three) questions. The symbols have their usual meanings. Programmable calculators are not allowed. Marks of each question and corresponding COs and POs are written in the brackets.

I(a) Define symmetric and shew-symmetric matrix Find the symmetric and skewsymmetric parts of the matrix $A B$, where

$$
A=\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 1 & 2 \\
3 & 2 & 1
\end{array}\right] \text { and } B=\left[\begin{array}{lll}
2 & 2 & 0 \\
2 & 4 & 2 \\
4 & 2 & 2
\end{array}\right]
$$

(b) Using elementary row transformations, to reduce A to I find inverse of A. where

15
(CO1,
PO2)

$$
A=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5 \\
3 & 4 & 5 & 7 \\
4 & 5 & 5 & 7
\end{array}\right]
$$

$$
\begin{aligned}
& 3 x_{1}-2 x_{2}+2 x_{3}=2 \\
& 2 x_{1}+2 x_{2}-x_{3}=7 \\
& 4 x_{1}-4 x_{2}+3 x_{3}=1 \\
& 2 x_{1}-x_{2}-3 x_{3}=6
\end{aligned}
$$

(b) Solve the differential equations

7
(CO3, PO1. PO2)
(c) Solve: $\left(y e^{x y} \cos 2 x-2 e^{x y} \sin 2 x+2 x\right) d x+\left(x e^{x y} \cos 2 x-3\right) d y=0$.

3(a) Solve: $\frac{d y}{d x}+\frac{y}{\left(1-x^{2}\right)^{2}}=\frac{x+\sqrt{1-x^{2}}}{\left(1-x^{2}\right)^{2}}$.
(CO3, PO1, PO2)
(b) Solve sec $y\left(1-x^{2}\right) \frac{d y}{d x}+x \sin y=x \cos y$.
(c) An inductance of 0.2 henties and a resistance of 2 ohms are connected in a

