B. Sc. in EEE, $3^{\text {th }}$ Semester

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

Mid-Semester Examination
Course No: EEE 4303
Course Title: Electronics II

Winter Semester, A.Y. 2022-2023
Time: 90 Minutes
Full Marks: 75

There are 3 (three) questions. Answer all 3 (three) questions. The symbols have their usual meanings. Programmable calculators are not allowed. Marks of each question and corresponding COs and POs are written in the brackets.

1. a) Formulate the expression of output voltage for a non-inverting summing
amplifier in case of three input voltages.
b) Determine the equation of the closed-loop voltage gain, Av of the T-feedback inverting amplifier shown in Fig. 1(b).

Fig. 1(b)
2. a) Sketch the Bode plots (magnitude \& phase) for the transfer function. $H(\omega)=\frac{5(\omega+2)}{j \omega(j \omega+10)}$.
b) Explain the Bode plot in Fig. 2(b) and find the transfer function $H(\omega)$.

Fig. 2(b)

> 3. a) sketch the circuit diagram of a unity gain amplifier and a precision half-wave rectifier circuit with its voltage transfer characteristics using op-amp.
b) Design a two-pole high-pass Butterworth active filter with a cutoff frequency
at $\mathrm{f}_{3 \times 8}=25 \mathrm{kHz}$ and a unity gain magnitude at high frequency. Also determine

