ISLAMIC UNTVERSITY OF TECHNOLOGY (ILT) ORGANISATION OF ISLAMIC COOPERATION (OIC) DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

Mid-Semester Examination
Course No.: EEE 4307
Course Title: Digital Electronics

Winter Semester, A. Y. 2022-2023
Time: 90 Minutes
Full Marks: 75

There are 3 (three) questions. Answer all 3 (three) questions. The symbols have their usual meanings. Programmable calculators are not allowed. Marks of each question and corresponding COs and POs are written in the brackets.

a)	A Senary numeral system (also known as base-6 or heximal) has six as its base and $0,1,2, \mathrm{~L}, \mathrm{M}$ and N as its independent digits. (i) Determine the decimal equivalent of (12NLM M M) 6 , (ii) Show the subtraction operation, $\mathrm{A}-\mathrm{B}$, using ($\mathrm{r}-1$)'s complement where $\mathrm{A}=$ (ML2N) 6 and $\mathrm{B}=(\mathrm{N} 21)_{6}$.	$\begin{gathered} 12 \\ (\mathrm{CO1}, \\ \mathrm{PO1}) \end{gathered}$
b)	Using Boolean algebraic manipulation, show that, $A \bar{B} C+\bar{A} B C+A B C+A \overline{B C}=A+B C$.	$\begin{gathered} 6 \\ (\mathrm{CO} 2, \\ \mathrm{PO} 1) \end{gathered}$
c)	Show that the dual of the exclusive-OR is equal to its complement.	$\begin{gathered} 5 \\ (\mathrm{CO} 2, \\ \mathrm{PO} 1) \end{gathered}$

2. a) Find the simplified expression of the following function using K -Map and implement
the simplified function using two level NOR-gates.
$F(\mathrm{CO2}$,
PO2)
b) Design a "full-adder". Hence, Construct ant eight-bit parallel adder using eight "full-

15 adder" circuits. What is the draw-back of using this parallel adder? Design the 8 -bit (CO3, parallel adder using look-ahead carry generator. Show all the necessary Boolean ex- PO2) pressions and logic diagrams.

Determine the Boolean function that the multiplexer implements.
b) For the Seniary numeral system mentioned in question 1(a), design a Binary Coded 20

Senary (BCS) adder where the adder will take two BCS numbers, $A=A_{2} A_{i} A_{0}$ and B (CO3, $=B_{2} B_{i} B_{0}$, and the results are to be shown in BCS form.
(Hint: The BCS form of a Senary number $(L 2 \mathrm{~N})$ s 4011010 101)

