				0
		am: B.Sc. Engg. (EE)	Date: October 03, 2023	(U.
S	emester: 5th		Time: 10:30 AM - 12:00 PM	,
		ISLAMIC UNIVERSITY OF THE ORGANISATION OF ISLAMIC O	ECHNOLOGY (IUT)	
	DEPAR'	TMENT OF ELECTRICAL AND I		
Mid-Semester Examination Winter Semester Course No.: EEE 4501 Full Marks: 75			Winter Semester, A.Y. 2022-202	3
COL	responding CO an	questions. Answer all 05 (five) que d PO are indicated in the right marg question paper. Symbols carry their us	stions. Marks for parts of the questions a in. Programmable calculators are not allows sual meanings.	nd ed.
1.	Define gradient and curl. Classi equation.	Define gradient and Laplacian of a scalar field. Classify vector fields in terms of their divergence and curl. Classify DC current density J mentioning reason. State Helmholtz's theorem with equation.		
2.	Calculate the total outward flux of vector			(12+3
		$\mathbf{A} = 2y \mathbf{a}_x - z^2 \mathbf{a}_y +$		(CO2 (PO2
	through the surfi State, with reaso	ace defined by $\rho = 3$, $0 < \phi < \pi/2$, $0 < n$, whether divergence theorem can be	z < 1. e applied in this case or not.	
3.	i) A cube carry 3 < z < 5. Fir	ying charge density $\rho_v = 12xz \text{ mC/i}$ and the total outward flux from the cub	m^3 is defined by $1 < x < 3$, $2 < y < 4$, e.	(CO3 (PO2
	ii) An infinite si the work don	heet of charge with density $\rho_8 = 20 \text{ m}$ e in moving a 20 μ C charge from poi	C/m^2 occupies the $x = 0$ plane. Determine int $A(3, 4, -1)$ to point $B(5, 2, 6)$.	(CO3 (PO2
4.	i) Derive an exp general expre	ession of V for surface charge is $V(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int_{\mathbf{r}}$	$\phi \le 2\pi$, $z = 0$. The disk is in air and a point $(0, 0, z)$ on the positive z axis. The $\frac{\rho_S(\mathbf{r'})dS'}{ \mathbf{r} - \mathbf{r'} }$	(10 (CO3 (PO2
		esponding electric field E.		(CO3 (PO2
5.	A solid condi- electric field surface of the	at the surface of the sphere is $E = 1$	at the origin is placed in free space. The 150 a, V/m. Find the total charge on the	(CO3) (PO2)
	ii) Consider a pr x = 0 with V	rallel plate capacitor with plates par = 0V. The other plate is at $x = d$ m	rallel to yz plane. One plate is placed at with $V = 0V$. The dielectric between the	(8) (CO3)

plates with permittivity $\epsilon_{o,F}$ F/m has a uniform charge density ρ_r C/m³. Determine the potential and electric field inside the capacitor.

(PO2)