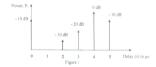
Name of the Program: B.Sc. in EEE Semester: 5th Date: 6 October, 2023 Time: 10:30 am - 12:00 pm

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

Mid-Semester Examination Course No.: EEE 4541 Course Title: Wireless Communication Winter Semester, A. Y. 2022-2023 Time: 90 Minutes Full Marks: 75

There are 3 (three) questions. Answer all 3 (three) questions. The symbols have their usual meanings. Programmable calculators are not allowed. Marks of each question and corresponding COs and POs are written in the brackets.

1.	a)	Assume that IUT wants to set up a new network with 10 Gbps capacity throughout the campus, which often requires around 300 ft long connections. Recommend a particular type of cable for the network considering cost and effectiveness.	4 (CO1, PO1)
	b)	Explain how the waveguide can carry a signal despite its single-sided closed cross-section.	5 (CO1, PO1)
	c)	The gain of antenna A is higher than that of antenna B. Determine which of these parameters are higher for antenna A and which are higher for antenna B: physical size, directivity, HPBW, and effective aperture.	(CO1, PO1)
	d)	A plane EM wave is propagating through a waveguide, which is filled in with material A. The relative permeability of A is 1. The EM wave is propagating at velocity 12.5/10 ⁴ mixes. The magnetic field intensity of the EM wave is 0.04 ampters. The constsectional area of the waveguide is 15 cm ² . Determine how much power is flowing through the waveguide.	10 (CO2, PO2)
2.	a)	Formulate an expression for received power in the case of two-ray model for a large distance between the transmitter and the receiver.	12 (CO1, PO1)


b) A hose studios transmitis signal and a phonos reveives in. There is a kullif-edge blockage 113 between the block studios and the phonos. The Sh might blockage is 30 mays from the (CO2, base statution and 2 km saws) from the phones. In addition, the phone is inside a building production of the structure of the statution. The statution of the transmitting answers is located at a building the situation grant of 80 m or 10 m of the block statution. The statution of the transmitting answers is located at a building the situation grant of 80 m or 10 m

$$[G(dB) = 20 \log \left(0.4 - \sqrt{0.1184 - (0.38 - 0.1v)^2}\right)$$
 $1 < v < 2.4$
 $G(dB) = 20 \log \left(\frac{0.325}{2}\right)$ $v > 2.4$

- a) "The Doppler shift f₄ increases if the frequency of the transmitted signal increases" 6 find out its reason. (CO1,
 - b) A voice call uses a spreading factor (SF) of 128 in UMTS. Determine its data rate.

(CO2, PO2)

c) The power delay profile for a multipath environment is shown in Figure 1. The coherence time is 5 microseconds. Determine whether the multipath environment is (CO2, underspread or overspread.

