B.Sc. in EEE, 5th Semester

October 11, 2023 (Morning) 10:00 A.M. - 11:30 A.M.

ORGANISATION OF ISLAMIC COOPERATION (OIC) DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

Mid Semester Examination Course No.: EEE 4579 Course Title: Engineering Materials Summer Semester, A. Y. 2022-2023 fime: 1.5 Hours full Marks: 75

There are 3 (three) questions. You have to answer option (a) of all the three questions but you can choose to answer any 2 out of the other 3 options. The symbols have their usual meaning, Programmable calculators are not allowed. Marks of each question and corresponding COs and POs are written in the brackets.

Each of the questions carry 5 marks. Among the questions you must answer the que (a) and answer any two from the options (b), (c) and (d). 3:					
a)	Discuss the potential uses for a superconducting material that can function at room temperature.	5 PO2, PO3			
b)	Describe the material type utilized in capacitors and provide evidence to support your position.	(5) (01 201			
c)	Illustrate the relationship between a material's dielectric constant and frequency through a graph.	(5) COO PO2			
d)	Discuss about the atomic interpretation of Ohm's law.	(5) COL POL			

Each of the questions carry	10	marks.	Among	the	questions	you r	nust	answer	
(a) and answer any two from	n tl	e option	s (b), (c) an	d (d).				$3 \times 10 = 30$

- a) Discuss how Langevin function is related to Orientational polarization. Determine (10) the generalized form of orientational polarization in case of saturation is P₀ = Nμ_p.
- b) Demonstrate with proper mathematical notation how the heat generated in a current (10) carrying conductor is related to the applied electric field.
- c) Discuss the properties of superconductor and describe how Meissner effect can be (10) applied in maglev trains.
- d) Demonstrate how refractive index of any material can be represented as a frequency dependent function. (10)

Each of the questions carry 10 marks. Among the questions you must answer the question (a) and answer any two from the options (b), (c) and (d). 3×10=30

a) The dielectric constant of a dielectric material at 30° C is, €, =1,006715 and at (10) 200° C is €,=1,0056 The number of molecules of this material per m³ is 2,62 × 10²¹, ¹⁰⁰ rot permine the value of the dipole moment of molecules and the sum of electronic and ionic polarizabilities.

(10)

- b) Calculate- (i) polarizability, (ii) relative permittivity, and (iii) The displacement of the Hydrogen atom when the atom is subjected to a field of 2.8k10³ V(em. Irodus of H₄ atom i: 0.53 Å, density of H atom 82 m²/m² and atomic weight is 1.1
- c) For a material, the critical fields are respectively 2.5×10⁴ A m and 5×10⁴ A/m for (10) 12 K and 8 K respectively. Determine the transition temperature and critical field for a 0 K and 4.5 K.
- d) A conduction wire has a resistivity of $1.4 \times 10^{-1} \Omega$ -m at room temperature. The (10) Fermi energy for such a conductor is 6.2 eV and conduction electron per m³ is 5.8×10^{-3} . Calculate

(i) The mobility and relaxation time of electrons.

(ii) The average drift velocity of electrons when the electric field applied to the conductor is 1 V/em.

(iii) The velocity of an electron with Fermi energy.

(iv) The mean free path of the electrons.

You may use these formulas if required.

$J = \sigma E$	$H_c = H_0 \left[1 - \left(\frac{T}{T}\right)^2\right]$	$D = \oplus_0 E + P$
$v_s = \frac{qE}{m}\tau$	$J_c = \frac{I_c}{\pi r^2}$	$D = \in_0 \in_r E$
$\int_{x} = -nqv_{x}$ $\sigma = \frac{nq^{2}r}{r}$	$I_c = 2\pi r H_c$ $\lambda = v_f \tau$	$P = \in_0 \kappa E$ $P = N \mu_p$
$\mu_{\sigma} = \frac{m}{\frac{q\tau}{m}}$	$C = \frac{\in A}{d}$	$\in_r = 1 + 4\pi NR^3$
$P = \in_b (\in_r - 1)E$	$W_f = \frac{1}{2}mv_f^2$	$F = qE = \frac{q^2}{4\pi\epsilon_0 x^2}$