October 11, 2023 (Afterno

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

Mid-Semester Examination Course No.: EEE 4709

Time: 90 Minutes Full Marks: 75

Course Title: Artificial Intelligence and Machine Learning There are 4 (four) questions. Answer all 4 (four) questions. The symbols have their usual meanings. Programmable calculators are not allowed. Marks of each question and corresponding COs and POs are written in the brackets.

A group of researchers at IUT has curated a dataset that contains the trip records of Uber cars, bikes, and CNGs around Dhaka city for the year 2022. The data contains information regarding the pick-up and drop-off dates/times as well as locations, trip distances, weather, fares, and number of passengers. There are a total of 10 million records with 9 different attributes in the data. Answer the following questions based on the representative sample of the data provided below.

Table 1: Sample dataset of Uber trip records

Locpick	Locarop	$time_{pick}$	$time_{drop}$	dist	Type	Fare	n_{pas}	Weather
Uttara	IUT	8.30	9.30	10	car	650	2	Sunny
Uttara	IUT	8.45	9.30	11	car	640	3	Sunny
Uttara	Jamuna	8.45	9.30	11	car	400	3	Sunny
IUT	Nilkhet	12.45	14.51	30	car	960	1	Sunny
IUT	Nilkhet	12.40	13.55	30	car	1220	2	Cloudy
IUT	Banani	15.45	18.15	17	car	1020	3	Rainy
IUT	Uttara	16.00	18.00	9.5	cng	390		Rainy
Mirpur	BUET	7.30	11.15	12	cng	600	2	Sunny
Uttara	Airport	10.00	10.30	5	bike	200		Cloudy

You are interested to know which are the most frequent destinations of Uber passengers. Is this a Machine Learning (ML) task? - Justify your answer. How do you think you can determine that from the data?

(COL

b) You want to predict the fare of a trip using the data. In that regard, you decide to design an ML model. Sketch the outline (showing step-by-step process) of the ML

pipeline you need to complete the task.

PO1)

		One of the researchers claimed that the 'number of passengers' attribute is not related to the fare of the trip, and you should remove that to avoid overfitting your model. State the different ways you can use to assess the exactitude of the claim.	3 (CO1, PO1)
		The 'trip distance' column had a total of 350 missing entries. You decided to remove those samples directly from the data before splitting it into training and testing folds. However, one of the researchers warned you that it might cause data leakage prob- lem. Do you agree or disagree with the statement of the researcher? – Justify your answer.	3 (CO1, PO1)
-	e)	One issue you faced after training your model is that it provides different results in different rous. One of the researchers suggested you use a '10-fold stratified cross-validation' method to reduce the variance. Do you approve of the suggestion? – Justify your answer.	3 (CO1, PO1)
-	f)	You are not satisfied with the performance of the linear regression model (RMSE _{prin} = 220, RMSE _{prin} = 240). Therefore, to achieve better results, you decided to use advanced regression techniques like Polynomial or Ridge regression. How likely will these algorithms be able to improve performance? — Explain your answer.	3 (CO2, PO1)
-	g)	One of your classmates suggested that you should 'change the currency from taka to dollar and that it will reduce the RMSE score'. Do you agree with the statement? – Justify your answer.	(CO1, PO1)
	h)	One of the researchers wants to design as AI system that would provide an hourly prediction of hotspots thigh, medium, low) for Uher depending on the demand. What changes would you have to bring to the MI. pipeline to achieve that? — Design such a system.	4 (CO3, PO3)
2.	a)	"BFS or DFS are stochastic in nature, unlike adversarial search techniques" – do you agree or disagree with the statement? Justify your answer.	(CO1, PO1)
	b)	Explain how the balance between exploration and exploitation is maintained in the Ant Colony Optimization technique.	(CO1, PO1)
		Page 2 of 3	

				thist, you want to t, which one do yo		more appropriate	PO:
				esults? – Justify yo			
3. a)	Perfor	m K-m	eans clustering	and determine the t	final clusters of the	data points given	
	below	and the	e respective clus	ster centroids.			(CO
		i.	Data points -	P1(1,1), P2(1,3).	P3(2,2), P4(4,4),	P5(5,5), P6(6,6),	
			P7(3,11).				
		ii.	Centroids - C	1(2,3), C2(1,6).			
		iii.	Maximum nu	mber of iterations	# 3		
b)	Cinn	ni ath c	u dos noint D/2	(3), which category	e do von think it ha	slongs to? _ Instify	
		nswer.		(17), without entregory		,	(CC
	your						PC
0)	Expla	in wha	the shape of sil	lhouette plots indic	ates. Can the silho	uette score be neg-	
	ative?	If so,	explain how.				(CC
4.	Table	- 2 list	s a sample of da	ita from a census. C	alculate the follow	ving using the data.	
		Entre	ppy of the datase	et.			(C)
	ii.	Gini-	index of the dat	caset.			Pt
	iii.	Infor	mation gain for	each of the attribu	tes and decide whi	ich splitting crite-	
		ria sl	nould be used as	s the root node.			
				Table 2			
) Age	EDUCATION	Table 2 MARITAL STATUS	Occupation A	INNUAL INCOME	
			EDUCATION bachelors		OCCUPATION A	Annual Income 25 <i>K</i> –50 <i>K</i>	
		39		Marital Status			
	1	39 50	bachelors bachelors	MARITAL STATUS never married	transport professional	25 <i>K</i> -50 <i>K</i>	
	1	39 50 18	bachelors bachelors high school	MARITAL STATUS never married married	transport professional	25 <i>K</i> –50 <i>K</i> 25 <i>K</i> –50 <i>K</i>	
	3	39 50 18	bachelors bachelors high school bachelors	Marital Status never married married never married married	transport professional agriculture	25 <i>K</i> −50 <i>K</i> 25 <i>K</i> −50 <i>K</i> ≤ 25 <i>K</i>	
	3	39 50 18 28 37	bachelors bachelors high school bachelors high school	Marital Status never married married never married married	transport professional agriculture professional agriculture	25K-50K 25K-50K ≤ 25K 25K-50K	
	1 2 3	39 50 18 28 37 5 24	bachelors bachelors high school bachelors high school	Marital Status never married married never married married married married	transport professional agriculture professional agriculture	25K-50K 25K-50K \$ 25K 25K-50K 25K-50K	

You have collected a cancer patient's dataset with 20 feature variables. You want to