ORGANISATION OF ISLAMIC COOPERATION (OIC) DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

There are 4 (four) questions. Answer 3 (three) questions. Question No. 1 and Question No. 2 are compulsory. Answer any I (one) question from Question No. 3 and Question No. 4. The symbols have their usual meanings. Marks of each question and corresponding COs and POs are written in the

J.	a)	Describe the action potential and its different states with the roles of the ion channels
		involved in the process.

For a neuron the ion concentrations at t₁ second are given as follows:

Extracellular Intracellular

(CO1.

ION	Extracellular	Intracellular
Na*	95 mM	155 mM
Ca ²	350 mM	285 mM
K."	200 mM	190 mM
	135 mM	155 mM

by finding out the membrane potential, Vm at each time point Given, Pet = 30%, Pk = 40%, PNa = 45%, Gas Constant R = 8.31 J/mol/K. Faraday Constant F = 96500 C/mol and temperature is 35° C.

2. a) Define any two instrumentation terms (performance metrics) of a sensor with proper

b) Formulate the relation between Gauge Factor and Poisson's ratio for a strain gauge (CO1,

to apply of some strain, the bridge is unbalanced and the output voltage Va = 15.6 mV. If, initial resistance Rg = 100KΩ and externally applied voltage, VEX = 20 V, calculate: ii) Amount of strain applied on the strain gauge.

-The strain-induced piezoresistive effect of the material can be ignored.

	two parallel plates of t The height and width	the capacitor so that it of the capacitor plate	s are 1 cm and 1.5 cm				
c)	 Following chart shows the temperature difference between several junctions thermocouple and emf induced in those junctions: 						
	T1 & T2	T2 & T3	T3 & T4	T4 & T5			
	15 mV	17 mV	12 mV	5 mV			
	Or,		thermocouple law.	man ex - 1 1- in hours			
	n i do tooda ha	working principle of I	Photoplethysmography	(PPG) and explain how			
a) b)	Briefly describe the vit can be used in puls The frequency range varies between 0.1 to k = 1.38x10 ⁶ (-23) jou i) Calculate the there	se oximeter to measu es of EMG signal var to 80 Hz. Given, tem iles K mal noise present ins	Photoplethysmography re oxygen saturation is ries from 50 to 3000 I sperature T = 27 C ar ide the bandwidth of I	tz and for EEG signal it ad Boltzmann's constant EMG signal. EMG signal?			
	Briefly describe the vit can be used in puls The frequency range varies between 0.1 t k = 1.38x10° (225) jou i) Calculate the theri ii) If the EMG signa iii) For the same sig have higher SNR.	es oximeter to measures of EMG signal varions 80 Hz. Given, temiles K mal noise present inside power is 0.1 mW, vinal power, determinant	Photoplethysmography re oxygen saturation in ties from 50 to 3000 I sperature T = 27 °C ar ide the bandwidth of I what is the SNR of the 2 which of the two abo	{z and for EEG signal it id Boltzmann's constant EMG signal.			