M Sc. Engg./Ph.D.

October 04, 2023 2:30 pm - 4:00 pm

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

Mid-Semester Examination	Winter Semester: 2022 - 2023		
Course Number: EEE 6413	Full Marks: 75		
Course Title: Engineering Optimization	Time: 1 Hour 30 Minutes		

There are 04 (four) questions. Answer any 03 (three) auestions. The symbols have their usual meanings. Marks of each question are written in the brackets in right margin.

- 1.a) Write the statement of an optimization problem
 - b) State a constrained and an unconstrained optimization problem. Briefly explain (10)Design Vector, Design Constraints, Constraint Surface, Objective Function,
 - c) A retail store stocks and sells three different models of TV sets. The store cannot (10)ordered in lots. It costs Say for the store whenever a lot of TV model / is ordered The cost of one TV set of model j is c. The demand rate of TV model j is d, units proportional to the investment in inventory at any time, with a = 0.5, denoting the

	TV model /		
		2	
Ordering cost. a: (\$)	50	\$0	100
Unit cost, c. (S)	40		80
Damand rate d.	800	400	1200

Formulate the problem of minimizing the average annual cost of ordering and

- 2 a) With suitable diagram, illustrate different types of extreme point
- b) i) By using a graphical method, solve the optimization problem

minimize
$$f(x) = x_1^2 + x_2 + 4$$

subject to: $c_1(x) = -x_1^2 - (x_2 + 4)^2 + 16 \ge 0$
 $c_2(x) = x_1 - x_2 - 6 \ge 0$

iii) Is the optimum point constrained?

(05)

(05)

c) Point x* = [24]^T is a local minimizer of the problem

minimize
$$f(x) = \frac{1}{4}[x_1^2 + 4x_2^2 + 4(3x_1 + 8x_2) + 100]$$

subject to: $x_1 = 2, x_2 \ge 0$

i) Find the feasible directions.

ii) Check if the second-order necessary conditions are satisfied.

- 3.a) Define definiteness of Matrices? Why and how they are important and related to an optimization problem? (5)
 - b) State the Sylvester's criterion definiteness of a matrix. (5)
 - c) Determine the nature of the quadratic function:

$$f(x) = 9x_1^2 + 2x_1x_2 + 7x_1x_3 + 8x_2^2 + 6x_2x_3 + 5x_2^2$$

- d) Find the dimensions of a box of largest volume that can be inscribed in a sphere of radius r using the method of constrained variation. (9)
- 4.a) What are the disadvantages of the method of direct substitution and constrained (04) variation in optimization problem with equality constraints?
 - b) Formulate the method of Lagrange multiplier for problems with equality constraint (09) for a simple case of two variables and one constraint. Expand the formulation to explain the necessary condition for a general problem.
 - e) Find the dimensions of a cylindrical tin (with top and bottom) made up of sheet (12) metal to maximize its volume such that the total surface area is equal to A₀ = 24π. Use the method of Lagrange multiplier with necessars and sufficient conditions.