Date: October 11, 2023 (Morning)
BBA in TM, $3^{\text {nd }}$ Sem.

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

DEPARTMENT OF BUSINESS AND TECHNOLOGY MANAGEMENT

Mid-Semester Examination
Course No. : Math 4361
Course Title : Mathematics

Winter Semester, A. Y. 2022-2023
Time
$: 1.5$ hours
Full Marks : 75

Answer all 3 (three) questions. All questions carry equal marks. Marks of each question and corresponding CO and PO are written in the right margin with brackets.

1. a) Define limit of $f(x)$ at x_{0}. Evaluate $\lim _{\rightarrow \rightarrow 0}\left(\sqrt{x^{4}+5 x^{y}}-x^{3}\right)$.
b) Define continuity of $f(x)$ at x_{0}. For what value of k and m the following function is continuous everywhere?

$$
f(x)=\left\{\begin{array}{cl}
x^{2}+5, & x>2 \\
m(x+1)+k, & -1<x \leq 2 \\
2 x^{3}+x+7, & x \leq-1
\end{array}\right.
$$

c) Find the derivative of (i) $y=\frac{\sin x \cos x \tan ^{\prime} x}{\sqrt{x}}$ (ii) $y=\left(2 x^{2}-1\right)^{2 n}$
2. a) Show that $f(x)=\sin x(1+\cos x)$ has a relative maxima at $x=\frac{\pi}{3}$,
b) State L. Hospital's rule. Evaluate (i) $\lim _{x \rightarrow \infty}\left(1-\frac{3}{x}\right)^{x}$ (ii) $\lim _{x \rightarrow 0}(1+\sin x)^{\frac{1}{x}}$
c) State Taylor's theorem. Expand $f(x)=\sin x$ in power of $\left(x-\frac{\pi}{2}\right)$ with remainder term.
3. a) Define successive differentiation. Find the nth derivative of $f(x)=(a x+b)^{\pi}$.
b) State and prove Leibnitz theorem.
c) If $y=\left(\sin ^{-4} x\right)^{\prime}$, the by Leibnitz's theorem show that

$$
\left(1-x^{2}\right) y_{n-2}-(2 n+1) x y_{n+1}-n^{2} y_{n}=0
$$

