B. Sc. Engg. (CEE)/1st Sem

09 October 2023 (Morning)

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

Mid Semester Examination Course Code: PHY 4153 Course Title: Physics I Winter Semester: 2022 - 2023 Full Marks: 75 Time: 1.5 Hours

There are 4 (Four) questions. Answer 3 (Three) questions. The symbols have their usual meanings. Marks of each question and corresponding CO and PO are written in the brackets. Any other statements, if necessary.

1.	(a)	What are Lissajous figures? Mention a few uses of them.	(05) (CO1) (PO1)
	(b)	Find the general equation of a particle in which two simple harmonic motions acting simultaneously at right angle to each other having frequency ratio 1:1. Hence, find the equation for a straight line and an ellipse.	(15) (CO2) (PO2)
	(c) Cale vibr	Two simple harmonic motions acting simultaneously on a particle are expressed by the equations: $y_1 = 3\sin(\omega t + x/6)$ $y_2 = 5\sin(\omega t + x/3)$ under (i) amplitude, (ii) phase motion and (iii) time period of the resultant tries.	(05) (CO3) (PO2)
2.	(a)	the rest samples and roted violabilis.	(05) (CO1) (PO1)
	(b)	Find the general solution of forced vibration. Discuss the resonant condition of it.	(15) (CO2) (PO2)
	(c)	A harmonic oscillator of quality factor 12 is subjected to a sinusoidal applied force of frequency one and half times the natural frequency of the oscillator. If the damping is small, obtain (i) the amplitude of the forced oscillation in terms of its maximum amplitude and (ii) the angle by which it will be out of phase with the driving force.	(05) (CO3) (PO2)
3.	(a)	What do you understand by coherent waves? Write down the Huygens principle of wave propagation.	(05) (CO1) (PO1)
		biscuss the working principle of the Newton's rings experiment and also discuss how the radius of curvature of a plano-convex lens is measured by this experiment.	(15)
	(c)	A parallel beam of light of wavelength 589 nm is incident on a thin glass plate, whose refractive index is 1.5, such that the angle of refrection into the plate is	(05)

whose retractive index is 1.5, such that the angle of refraction into the plate is (CO3) 60°. Calculate the thickness of the glass plate for a first order dark fringe (PO2) produced by reflected light.

4. (a) Distinguish between Fresnel and Fraunhofer diffraction of light.

(b) Derive the intensity expressions for double-stif Transhofter diffraction or light (15) and show that the intensity of light correct constraints and the first intensity of light (16) constraints and the stif diffraction of a single stif diffraction is $I = I_s \frac{\sin^2}{\beta^2}$, where the symbols have their usual meaning.

(c) Light of wavelength 500 nm passes through a slit of 0.2 mm wide. The (05) diffraction pattern is formed on a screen 60 cm away. Determine the angular (CO3) spread of central maximum. (PO2)