ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT)

ORGANISATION OF ISLAMIC COOPERATION (OIC)

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

TERM : MID SEMESTER EXAMINATION
COURSE NO. : CEE 4361
COURSE TITLE: Civil and Environmental Technology 1

WINTER SEMESTER: 2022-2023
TIME : 1.5 Hours
FULL MARKS : 75

There are 3 (Three) questions. Answer all questions. Programmable calculators are not allowed. Do not write on this question paper. The figures in the right margin indicate full marks, CO, and PO. The symbols have their usual meaning.

1. The sieve analysis data of a sand sample and stone aggregate sample for a construction work are given below:

ASTM Sieve	$\frac{\text { Sand }}{}$ Material Retained (g)	$\frac{\text { Stone aggregate }}{\text { Material Retained }(\mathrm{g})}$
3 inch	0	0
1.5 inch	0	0
$1 /$ inch	0	200
$3 / 8$ inch	0	950
$\# 4$	0	2500
$\# 8$	80	900
$\# 12$	75	0
$\# 16$	0	0
$\# 30$	60	0
$\# 40$	50	0
$\# 50$	60	0
$\# 100$	40	0
$\# 200$	10	0
Pan	70	50

(i) Calculate the fineness modulus (FM) for the sand and stone aggregate samples,
(ii) Draw the grading curves for the samples in one graph,
(iii) Make a brief discussion on the FM and grading curves based on technical perspective.
2. Mixture proportion of mortar is necessary for plastering work of a brick wall.

The following data are provided:
S / C (weight ratio) $=2.5: 1 ; \mathrm{W} / \mathrm{C}$ (weight ratio) $=1: 2 ;$ Specifie gravity of cement $=3.0 ;$ Specific gravity of sand $=2.5 ;$ Air content $=1.5 \%$; Unit weight of cement $($ with void $)=1400 \mathrm{~kg} / \mathrm{m}^{3}$, Unit weight of sand (with void) $=1350 \mathrm{~kg} / \mathrm{m}^{3}$.
(i) Calculate the unit contents of sand, cement, and water,
(ii) Calculate the cost of materials for 1 cubic meter of mortar (assume cost for $1 \mathrm{~m}^{2}$ of sand $=1750 \mathrm{TK}$, cost for 50 kg of cement $=500$ TK, cost for 100 L of water $=10 \mathrm{TK}$),
(iii) Calculate the unit weight of mortar,
(iv) Calculate the volumetric ratio of cement and sand,
(v) Calculate compaction factor,
(vi) Mention two measures that can be taken to increase the compressive strength of the mortar.
3. (a) Compare briefly between amorphous and crystalline materials. Give an (4) example of each of these materials.
(b) Compare between low-alloy steel bar and carbon-steel bar based on theirductility, weldability and corrosion resistance.
(c) "Around I ton of CO_{2} is produced during I ton of Portland cement production" - justify.
(d) Whit is unsoundness of cement? How does fineness of cement influence the strength of mortar?
(e) Why are alkalis and iron pyrites not desirable in the clay used to produce brick?
(f) Compare briefly among CEM I, CEM II/A-M, CEM II/B-M and CEM V/B cements. Which type of cement is more environmentally friendly?

Apertive mm or pm	Approximate Amperia/ squivalent in.	Praviour designation of paarest aize	
		85	ASTM
125 mm	5	-	$5 \mathrm{in}$.
106 mm	4.24	4 in.	4.24 in .
90 mm	3.5	34 in .	34 in.
75 mm	3	3 in .	3 in .
63 mm	2.5	$2 \frac{1}{2} \mathrm{in}$.	$2 \frac{12}{}$
53 mm	2.12	2 in .	2.12
45 mm	1.75	13 in .	13 in
37.5 mm	1.60	$1 \frac{1}{1} \mathrm{in}$.	14 in.
31.5 mm	1.25	$1 \frac{1}{4} \mathrm{n}$.	$1 / \mathrm{in}$
26.5 mm	1.06	1 in.	1.06
22.4 mm	0.875	fin.	j in.
18.0 mm	0.750	Iin.	in.
16.0 mm	0.625	1 in .	1 in.
13.2 mm	0.530	$\underline{i n}$.	0.530 in .
11.2 men	0.438	$\stackrel{-}{1}$	
8.5 mm	0.375		1 m .
8.0 mm	0.312	thin.	thin.
5.7 mm	0.285	t in.	0.285 in .
5.6 mm	0.223	\bigcirc	No. 34
4.75 mm	0.187	A in.	No. 4
4.00 mm	0.157	-	No. 5
3.35 mm	0.132	No. 5	No. 6
2.80 mm	0.111	No. 6	No. 7
2.36 mm	0.0837	No. 7	No.
2.00 mm	0.0787	No. 8	No. 10
1.70 mm	0.0681	No. 10	No. 12
1.40 mm	0.0555	No. 12	No. 14
1.18 mm	0.0469	No. 14	No. 16
1.00 mm	0.0394	No. 18	No. 18
$850 \mu \mathrm{~m}$	0.0331	No. 18	No. 20
$710 \mu \mathrm{~m}$	0.0278	No. 22	No. 25
$600 \mu \mathrm{~m}$	0.0234	No. 25	No. 30
$500 \mu \mathrm{~m}$	0.0197	No. 30	No. 35
425 mm	0.0165	No. 36	No. 40
356 mm	0.0139	No. 44	No. 45
300 pm	0.0117	No. 52	No. 50
250 mm	0.0098	No. 60	No. 60
212 mm	0.0083	No. 72	No. 70
180 mm	0.0070	No. 85	No. 80
150 mm	0.0059	No. 100	No. 100
125 mm	0.0049	No. 120	No. 120
106 رmim	0.0041	No. 150	No. 140
90 mm	0.0035	No. 170	No. 170
76 mm	0.0029	No. 200	No. 200
63 mm	0.0025	No. 240	No. 230
53 mm	0.0021	No. 300	No. 270
45 mm	0.0017	Na .350	No. 325
38 mm	0.0015	-	No. 400
32 mm	0.0012	-	No. 450

