B. Sc. Engg. (CEE)/5 ${ }^{\text {th }}$ Semester

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT)

ORGANISATION OF ISLAMIC COOPERATION (OIC)

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

Mid-term Examination
Course Number: CEE 4513
Course Title: Structural Analysis and Design I

Winter Semester: 2022-2023
Full Marks: 100
Time: 1.5 Hours

There are 4 (four) questions. Answer all of them. The symbols have their usual meanings. Marks of each question and corresponding CO and PO are written in brackets. Assume any reasonable value if required.

1. Determine the static determinacy of the truss shown in Fig. 1, find the stresses in COI, PO1: [15] member $B C, J C$, and $J G$ if the cross-sectional areas of all members are $10 \mathrm{in}^{2}$.

Fig. 1 for Question No. 1
Or
Determine the support reactions of the tied three hinged arch of Fig. 2. Also, calculate CO1, PO1: [15] the tension in the rod $A D$. Assume that AB and BC portions are pin connected at B .

Fig. 2 for Question No. 1
2. (a) Draw the influence line for the shear in panel $C D$ and bending moment at E for the CO2, PO2; [15] girder with the floor system shown in Fig.3. Assume that the load moves from A to F .

Fig. 3 for Question No. 2 (a)
(b) Draw the influence lines for the beam shown in Fig. 4 for the following items:
(i) vertical reactions at supports B, D, and G
(ii) moment at support G

Fig. 4 for Question No. 2 (b)
(c) Draw the influence lines for the moment at support A, and vertical reaction at support B of the frame shown in Fig. 5 .

Fig. 5 for Question No. 2 (c)
3. (a) State and derive the general cable theorem.

CO3, PO2: [10]
(b) A cable has a span of 500 ft and a sag ratio of $1 / 40$. The slope of the cable chord is defined by $\tan \gamma=0.7$. The load on the cable is $1 \mathrm{kip} /$ horizontal f. Find (a) the slope of the cable at 400 ft from the left support, (b) maximum tension in the cable, and (c) the length of the loaded cable.
4. Due to the axle loading shown in Fig. 6, calculate the maximum moment at the quarter point of a simply supported beam with a span of 80 ft .

Fig. 6 for Question No. 4

Or

Due to the axle loading shown in Fig. 7, calculate the maximum shear at a point 30 ft.
CO2, PO2: [15]
from the left end of a simply supported beam with a span of 80 ft .

Fig. 7 for Question No. 4

