ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

Mid-Semester Examination
Course No.: CEE 4563
Course Title: Engineering Hydrology

Winter Semester: 2022-2023
Full Marks: 75
Time: 1.5 Hours

There are 3 (Three) questions. Answer all 3 (Three) questions. Programmable calculators are not allowed. Do not write on this question paper. The figures in the right margin indicate full marks and corresponding CO and PO. Symbols convey their usual meanings. Assume reasonable data/values for any missing data/info.

1. (a) Write down the advantages and disadvantages of different arithmetic average
(CO1, PO1: 4) method? What are the characteristics of DAD curves?
(b) Explain how temperature and wind speed affect evaporation.
(CO1, PO1: 5)
(c) What is pan coefficient? What are the differences between interception and transpiration?
(d) Explain why a perennial river can be both influent and effluent with figure.
(e) What does engineering hydrology deal with? Write the major branches of
(CO1, PO1: 3) hydrology.
2. (a) The coordinates of four precipitation gauging stations are $\mathrm{A}=(3,4), \mathrm{B}=(9,4)$,
(CO2, PO2: 8) $\mathrm{C}=(3,12)$, and $\mathrm{D}=(9,12)$. The observed precipitation amounts at these gauges are $\mathrm{PA}=25 \mathrm{~mm}, \mathrm{~PB}=33 \mathrm{~mm}, \mathrm{PC}=20 \mathrm{~mm}, \mathrm{PD}=29 \mathrm{~mm}$, respectively. These stations are located in a rectangular basin whose boundaries are defined by the following coordinates $(0,0),(14,0),(14,13),(0,13)$. If the units of the coordinate points given above are km , compute the mean areal precipitation over this basin in a graph paper using
a) The Thiessen polygons method
b) The arithmetic average method

In addition, compute the total volume of water produced by the recorded rainfall.
(b) The initial and the constant infiltration rates of a 201 -hectare catchment are $6 \mathrm{~cm} / \mathrm{hr}$
(CO2, PO2: 6) and $22 \mathrm{~cm} / \mathrm{hr}$, respectively. If the Horton's constant is $2 \mathrm{hr}^{-1}$ then determine the infiltration volume after 75 minutes.
(c) Compute the daily evaporation from a Class A pan if the amounts of water added to
(CO2, PO2: 6) bring the level to the fixed point are as follows:

Day	1	2	3	4	5	6	7
Rainfall (mm)	14	6	12	8	0	5	6
Water added (mm): removed	-5	3	0	0	7	4	3

What is the evaporation loss of water in this week from a lake (surface area $=640$ ha) in the vicinity, assuming a pan coefficient of 0.75 ?
(d) An isohyetal pattern of critical consecutive 4-day storm is shown in the figure.
(CO2, PO2: 8)
Prepare the DAD curye in a graph paper.

Isohyetal range (cm)	Area Enclosed $\left(\mathbf{k m}^{2}\right)(1000)$
>50	0.5
$40-50$	4
$35-40$	7
$30-35$	29
>35	2
$30-35$	9.5
$25-30$	82
$20-25$	122
$15-20$	156
$10-15$	236

(e) Explain the formation, types, and forms of precipitation with a proper figure.
3. (a) The stream discharges for various stages at a particular section were observed to be as follows. Obtain an equation for the stage-discharge relationship plotting in a graph paper and determine the discharge for a stage of 4.9 m and 12 m .

Stage (m)	1.81	1.81	2.00	2.90	3.70	4.50
Discharge (cumec)	1.00	1.50	2.55	5.60	11.70	20.20
Stage (m)	5.40	6.10	7.30	7.70	8.10	
Discharge (cumec)	32.50	44.50	70.0	80.0	90.0	

(b) The following data were collected for a stream at a gauging station. Compute the (CO3, PO3: 8) discharge with a proper diagram (Landscape) of the section.

Distance from one end of water surface (m)	$\begin{aligned} & \text { Depth, d } \\ & \text { (m) } \end{aligned}$	Immersion of current meter below water surface					
		At 0.6d		$\text { At } 02 \mathrm{~d}$		At 0.8d	
		Rev.	Sec.	Rev.	Sec.	Rev.	Sec.
3	1.4	12	50				
6	3.3			38	52	23	55
9	5.0			40	58	30	54
$\frac{12}{15}$	9.0			48	60	34	58
15	5.4			34	52	30	50
18	3.8			35	52	30	54
21	1.8	18	50				

Rating equation of current meter: $\mathrm{v}=0.3 \mathrm{~N}+0.05, \mathrm{~N}=\mathrm{rps}, \mathrm{v}=$ velocity, $(\mathrm{m} / \mathrm{sec})$, Rev.- Revolutions, Sec-time in seconds.

