ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT)
 ORGANISATION OF ISLAMIC COOPERATION (OIC) Department of Computer Science and Engineering (CSE)

MID SEMESTER EXAMINATION DURATION: 1 HOUR 30 MINUTES

WINTER SEMESTER, 2022-2023
FULL MARKS: 75

Phy 4141: Physics I

Programmable calculators are not allowed. Do not write anything on the question paper. Answer all 3 (three) questions. Figures in the right margin indicate full marks of questions whereas corresponding CO and PO are written within parentheses.

1. a) Describe the effect of the frequency of incident radiation on photoelectric effect along with a graphical illustration.
b) Why the scattered radiation has a longer wavelength than the incident radiation when an incident X-ray radiation collides with a valence electron in the graphic target? Explain in qualitative terms following Compton model.
c) The work function for tungsten metal is 4.52 eV . Answer the following questions:
i. What is the cut-off wavelength for tungsten?
ii. What is the maximum Kinetic Energy (K.E.) of the electron when radiation of wavelength 198 nm is used?
2. a) Define radioactivity and state the characteristics of radioactive substances.
b) "A radioactive nuclide spontaneously emits a particle, transforming itself in the process into a different nuclide, occupying a different square on the nuclide chart"- associate this statement with a law governing the radioactive disintegration process. Extend your answer to
(PO2) find out the half-life of the radioactive nuclei.
c) Consider that the masses of proton and neutron are 1.00728μ and 1.00866μ, respectively. Calculate the average binding energy per nucieon in units of mega-electron volts for an atom of Lithium-7 with an observed mass of 7.01435μ.
3. a) Explain electric field and electric flux.
b) Describe Gauss's law for electrostatics. Using Gauss's theorem, show that the electric field intensity due to a thin infinite long wire with cylindrical symmetry is expressed as

$$
\begin{equation*}
E=\frac{\lambda}{2 \pi \epsilon_{0} r} \tag{2}
\end{equation*}
$$ be $9.5 \mathrm{~m} / \mathrm{s}^{2}$. If the mass of the first particle is $6.4 \times 10^{-7} \mathrm{~kg}$, calculate the mass of the second particle and the magnitude of the charge of each particle.

