

06 October 2023 (Afternoor

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) Department of Computer Science and Engineering (CSE)

MID SEMESTER EXAMINATION DURATION: 1 HOUR 30 MINUTES

WINTER SEMESTER, 2022-2023 FULL MARKS: 75

Phy 4141: Physics I

Programmable calculators are not allowed. Do not write anything on the question paper. Answer all 3 (three) questions. Figures in the right margin indicate full marks of questions whereas corresponding CO and PO are written within parentheses.

1.		Describe the effect of the frequency of incident radiation on photoelectric effect along with a graphical illustration.	5 (CO1) (PO1)
	b)	Why the scattered radiation has a longer wavelength than the incident radiation when an incident X-ray radiation collides with a valence electron in the graphic target? Explain in qualitative terms following Compton model.	15 (CO2) (PO2)
	c)	The work function for tungsten metal is 4.52eV. Answer the following questions: i. What is the cutoff wavelength for tungsten? ii. What is the maximum Kinetic Energy (K.E.) of the electron when radiation of wave- length 196mr is used?	5 (CO3) (PO1)
2.	a)	Define radioactivity and state the characteristics of radioactive substances.	5 (CO1) (PO1)
	b)	"A radioactive nuclide spontaneously emits a particle, transforming itself in the process into a different nuclide, occupying a different square on the nuclide chart" -associate this state- ment with a law governing the radioactive disintegration process. Extend your answer to find out the half-life of the radioactive nuclei.	10+5 (CO2) (PO2)
	c)	Consider that the masses of proton and neutron are 1.00728µ and 1.00866µ, respectively. Calculate the average binding energy per nucleon in units of mega-electron volts for an atom of Lithium 7 with an observed mass of 7.01435µ.	(CO3) (PO1)
3.	a)	Explain electric field and electric flux.	(CO1) (PO1)
	b)	Describe Gauss's law for electrostatics. Using Gauss's theorem, show that the electric field intensity due to a thin infinite long wire with cylindrical symmetry is expressed as $E = \frac{\lambda}{2\pi c_{\rm F} r}$	6 + 9 (CO2 (PO2
	c)	Two equally charged particles are held $3.2 \times 10^{-3}m$ apart and then released from rest. The initial acceleration of the first particle is observed to be $8.2m/s^2$ and that of the second to be $8.2m/s^2$ is the more of the first particle is $6 \le 10^{-7}$ for calculate the more of the second to	(CO3

particle and the magnitude of the charge of each particle.