ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT)
 ORGANISATION OF ISLAMIC COOPERATION (OIC) Department of Computer Science and Engineering (CSE)

MID SEMESTER EXAMINATION DURATION: 1 HOUR 30 MINUTES

WINTER SEMESTER, 2022-2023
FULL MARKS: 75

CSE 4309: Theory of Computing

Programmable calculators are not allowed. Do not write anything on the question paper.
 Answer all 3 (three) questions. Figures in the right margin indicate full marks of questions whereas corresponding CO and PO are written within parentheses.

1. a) State the differences between a DFA and an NFA.
b) Design a DFA for the language accepting strings ending in either '01' or ' 10 ' over input alphabet, $\Sigma=\{0,1\}$.
c) Design an NFA to recognize '0101', '101' and '011' over input alphabet, $\Sigma=[0,1\}$.

Figure 1: DFA State Diagram for Question 2.b)
b) Consider the DFA shown in Figure 1 and minimize it using Equivalence Theorem.
c) A vending machine is an automated machine that provides items such as snacks, beverages, lottery tickets to consumers after money, a credit card, or a specially designed card inserted into the machine. Consider a very simple vending machine which provides a pen at a cost of 10 Bangladeshi Taka (BDT) each. The machine takes $2 \mathrm{tk}, 5 \mathrm{tk}$, and 10 tk only and does not return changes even if you pay more than the price of a pen. It accepts payment only if you pay at least or more than the rate for a pen, otherwise it rejects the payment. There is a reset button in the machine that someone can press anytime to start a new purchase. Now for this vending machine, design a state diagram of DFA.
d) Compute the ε-closure of each state and convert the ε-NFA shown in Table 1 to an equivalent DFA.

Table 1: Transition table for Question 2.d)

	ε	a	b	c
$\rightarrow p$	\emptyset	$\{p\}$	$\{q\}$	$\{r\}$
q	$\{p\}$	$\{q\}$	$\{r\}$	\emptyset
$* r$	$\{q\}$	$\{r\}$	\emptyset	$\{p\}$

3. a) What is the order of precedence followed by the operators of the regular expression? Using Pumping lemma of regular languages, show that language $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is not regular.
b) Convert the following NFA shown in Table 2 to an equivalent DFA and informally describe the language it accepts.

Table 2: Transition table for Question 3.b)

	0	1
$\rightarrow p$	$\{p, q\}$	$\{p\}$
q	$\{r, s\}$	$\{t\}$
r	$\{p, r\}$	$\{t\}$
$* s$	\emptyset	\emptyset
$* t$	\emptyset	\emptyset

c) You are given an NFA, $\mathrm{N} 1=\left(Q 1, \sum, \delta 1, q 1, F 1\right)$ that accepts the language A , and an NFA, $N 2=\left(Q 2, \sum, \delta 2, q 2, F 2\right)$ that accepts the language B. Show that there exists an NFA, N that recognizes the language $A \cdot B$.
d) Convert the following Regular Expressions to equivalent NFAs: $3+3$
i. $(0 \cup 10)^{*} 010(0 \cup 1)^{*}$
ii. $a(a b b)^{*} \cup b$

