09 October 2023 (Afternoon

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) Department of Computer Science and Engineering (CSE)

MID SEMESTER EXAMINATION DURATION: 1 HOUR 30 MINUTES WINTER SEMESTER, 2022-2023 FULL MARKS: 75

Math 4341: Linear Algebra

Programmable calculators are not allowed. Do not write anything on the question paper. Answer all <u>3 (three)</u> questions. Figures in the right margin indicate full marks of questions whereas corresponding CO and PO are written within parentheses.

Do appropriate column operations on marix A so that there is no non-zero entry to the right of the single box. Then do column operations so that there is no non-zero entries to the right of double box. Show all necessary steps for these column operations.

- b) Formulate the appropriate matrices that can be multiplied with the matrix A to achieve the same outcome as Question 1.a) How would you multiply these matrices with A? What factorization of A does this produce?
- c) If X is an invertible square matrix, what can you imply about C(X) and N(X)?
- (CO1)
- (PO1)
 - 5+
- 5 + 3
- $\begin{bmatrix}
 -1 & -1 & 0 & 0 & 0 & 0 \\
 -1 & 2 & -1 & 0 & 0 & 0
 \end{bmatrix}$ (C02)
 (P01)

_	0	-1	2	$^{-1}$	0	0
-	0	0	$^{-1}$	2	-1	0
	0	0	0	-1	2	-1

i. What is the rank of A?

ii. Find a basis for N(A).

iii. How many solutions would it have for any right hand side, b?

b) Consider the following system of equations:

a) Suppose A is a 6 × 6 matrix with following entries:

 $x + 2y - 2z = b_1$ (COI)

$$2x + 5y - 4z = b_2$$
 (PO1)

$$4x + 9y - 8z = b_x$$

Under what condition on b is this solvable? Find all solutions x, y, z when it is solvable.

Page 1 of 2

a) Compute the 3 by 3 matrices M₁, M₂, M₃ where:

$$M_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix} \begin{bmatrix} 2 & -1 & 3 \end{bmatrix} \quad M_2 = \begin{bmatrix} 0\\1\\-3 \end{bmatrix} \begin{bmatrix} 0 & 2 & -1 \end{bmatrix} \quad M_3 = \begin{bmatrix} 0\\0\\1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 4 \end{bmatrix}$$

Use elimination to solve Ax = b, where $A = M_1 + M_2 + M_3$ and $b = \begin{bmatrix} 1 \\ 5 \\ 1 \end{bmatrix}$.

b) Suppose A is a 4 by 5 matrix and s = (4, 5, 2, 1, 0) is the only special solution for Ax = 0.	3 + 7
i. Describe how C(A) and N(A) would look like.	(CO1)
	(PO1)

What is the exact Row-reduced Echelon from R of A