DURATION: 1 HOUR 30 MINUTES

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) Department of Computer Science and Engineering (CSE)

MID SEMESTER EXAMINATION WINT

WINTER SEMESTER, 2022-2023 FULL MARKS: 75

(PO1)

CSE 4753: Bioinformatics

Programmable calculators are not allowed. Do not write anything on the question paper. Answer all 3 (three) questions. Figures in the right margin indicate full marks of questions whereas corresponding CO and PO are written within parentheses.

a)	ite down the steps to prepare RNA-Seq library to measure gene expressions along with	
	ort details.	(CO
		(PO

Explain the observed post processing operations of Transcription phase during Central-Dogma.

c) There are 64 codon combinations possible but only 20 amino acids are there. Nature adopts a many-to-one mapping (codon to amino acid) during translation phase of Central-Dogma. (The mapoing table is shown in Figure 1.

				d Letter		
		U	C	A	G	
	U	UUU Phe UUC UUA Leu UUG	UCU UCC Ser UCA UCG	UAU Tyr UAC Stop UAG Stop	UGU Cys UGC Stop UGA Stop	UCAG
1st	С	CUU Leu CUA CUA	CCU CCC Pro CCA CCG	CAU His CAC CAA Gin CAG	CGU CGA CGG	U C A G 3rd
etter	A	AUU IIe AUA AUG Met	ACU ACC The ACA ACG	AAU Asn AAC AAA Lys AAG Lys	AGU Ser AGC AGA Arg AGG Arg	U lett C A G
	G	GUU GUC GUA GUG	GCU GCC Ala GCA GCG	GAU Asp GAC GAA GIU	GGU GGC GGA GGG	U C A G

Figure 1: Codon to amino acid mapping table for Question 1.c)

Discuss the significance of the mapping scheme.

- a) Show various gene products by drawing a diagram showing their dependency relationship.
- -, ----, ----, -----, ------,

b) Nussinov Folding Algorithm detects best secondary structure for an RNA sequence. Describe how the algorithm works.

SE 4753 Page 1 of 2

		Table 1: 0	Gene express	ion data for	Question 2	.c)	
			Sample 1	Sample 2		3	
		Gene 1	34	24	64		
		Gene 2	120	140	20		
		Gene 3	80	95	160		
		Gene 4	40	110	10		
	c) Table 1 represents expression data us	s gene exp sing quant	ression data ile method.	ı for 4 gen	es across 3	samples. Normalize the gene	10 (CO2) (PO1)
3.	a) Write a short note	on scorin	g matrix.				5 (CO2) (PO1)
	 A set of sequences quences is shown Pair Group Metho 	in Table 2. od with Ar	Construct:	guided tre can (UPG)	ee for Clast (A) appro-		10 (CO2) (PO1)
		Table	2: Distance r	natrix for Q	uestion 3.b		
			S1 S	2 S3 S4	S5		
			S1 0				
			S2 14 0				
			S3 12 8	0			
			S4 10 1:	5 12 0			
			S5 15 13	8 16 20	0		
	c) A biostatistician tion 3.b). Find th	wants to aj e refereno	eply Center e sequence	Start Meth for him/he	od to align	sequences mentioned in Ques-	10 (CO2) (PO1)