

Semester: 3rd Sem/1rd Sem

Date: October 9, 2023

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) DEPARTMENT OF NATURAL SCIENCES

Mid Semester Examination	Winter Semester: 2022 - 2023
Course Number: Math 4311/Math 4599	Full Marks: 75
Course Title: Vector Analysis, Multivariable Calculus and Complex	Time: 1.5 Hours
Variables	

There are 3 (Three) questions. Answer all of them. The symbols have their usual meanings. Programmable calculators are not allowed. The figures in the right margin indicate full marks

L	a)	Consider the vectors $a = i - 3j + 2k$, $b = 2i - 4j - k$, $c = 3i + 2j - k$. (i) Find the vector component of a in the directions of b and perpendicular to b. (ii) Determine whether the vectors \mathbf{a} , \mathbf{b} , \mathbf{c} , are coplanar or not.	[12]	CO2 PO1
	b)	If $A = (3x^2 + 6y)t^2 - 14yzt^2 + 20xz^2k$, evaluate $\int_z A \cdot dx$ from (0,0,0) to (1,1,1) along the following paths C: (i) $x = t, y = t^2$, $z = t^2$. (ii) the straight lines from (0,0,0) to (1,0,0) then to (1,1,0) then to (1,1,1).	[13]	C01 P01
2.	a)	Show that $F=(2xy+z^2)i+x^2j+3xz^2k$ is a conservative force field. Find the scalar potential ϕ . Then use ϕ to find the work done in moving an object in this field from $(1,-2,1)$ to $(3,1,4)$.	[12]	CO3 PO2
	b)	(i) Solve $x^6 + 1 = \sqrt{3}i$	[7]	CO1
		(ii) Discuss the Riemann surface for the function z ^{1/5} .	[6]	POI
3.	a)	Consider the transformation $w = \ln z$.	[10]	CO1
		Show that (i) circles with creater at the origin in the z plane are mapped into lines parallel to the ν taxis in the ν plane, (ii) lines or rays emanding from the origin in the z plane is mapped into lines parallel to the at axis in the ν plane, (iii) the z plane is mapped into a strip of width 2π in the ν plane. Illustrate the results graphically	[10]	POI
	b)	(i) circles with center at the origin in the z plane are mapped into lines parallel to the τ axis in the w plane, (ii) lines or rays emanating from the origin in the z plane is mapped into lines parallel to the u axis in the w plane, (iii) the z plane is mapped into a strip of width 2π in the w plane. Illustrate the	[10]	