

Program: MScTE (3rd Semester), PhD (1rt Semester) Semester: Winter

Date: 9 October 2023. Afternoon Time: 2.30 pm to 4.00 pm

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) DEPARTMENT OF TECHNICAL AND VOCATIONAL EDUCATION (TVE)

Academic Year: 2022-2023 Examination: Mid Semester

Full Marks: 75 Time: 90 minutes Course Title: Quantitative Research and Advanced Statistics

There are 4 (four) questions, Answer three (3) questions, Figures in the right margin indicate marks of the questions.

- (a) Research is a process in which a researcher empages in a small set of logical stems. Discuss the three (12) COI
 - (b) Just because a problem exists, and a researcher can clearly identify the issue does not mean that the (13) CO1
 - researcher can or should investigate it. Justify the statement with example. (a) Classify the types of quantitative research questions. (b) A researcher wants to examine the relationship of critical thinking skills to student achievement in (10) COI
 - engineering program for first year students in a public university. The researcher moderates the assessment of critical thinking using prior grades as indicators and controls parents' educational attainment. - Based on this study, write down one research question for each of the classifications
 - you have mentioned in question 2 (a). (c) A researcher wants to investigate the performance of emotionally at-risk and non-at-risk first year (10) CO1
 - State a directional hypothesis and the corresponding null hypothesis with equation. ii) State a non-directional hypothesis and the corresponding null hypothesis with equation.
- 3. (a) Differentiate between parametric and non-parametric tests. (b) Define confidence level, confidence interval. Level of significance and p- value, Interpret the (6) CO3

 - i) The p-value is greater than alpha. ii) The p-value is less than or equal to alcha. (6) CO2
 - (c) Explain type-I and type-II errors. How can a researcher minimize the chance of committing a type-I or type-II error while declaring the confidence level of his study? (d) A responsible is experimenting with a new teaching method to teach differential calculus to first-way angineering students. The research hypothesis (Ha) is that the new method of teaching results in
 - and consequences if the researcher committed the following error in his conclusion? i) Type-Lerror.
 - ii) Type-II error. (a) The expression p < .001 occurs in the results section of a journal article. Does this indicate that the</p> investigator used a very strict level of significance to test the null hypothesis? Explain (b) For each of the following instances, locate the regions of rejection and the sample results on a rough
 - distribution sketch; perform the test; and give final conclusions about the value of µ. H₁: μ = 50, H₁: μ ≠ 50, α = 0.05, sample: 49, 48, 54, 44, 46 He: u = 20. He: u < 20. a = 0.01, sample: 11, 19, 17, 15, 13, 22, 12, 22, 10, 17
 - (c) What are the assumptions that a researcher needs to satisfy before conducting a one sampled t-test? (8) (00)

(8) CO2

Formulae: TVE 6355 [The symbols have their usual meanings]

Critical Values for the t-Distribution

1.314 1.703 2.052 2.473

	.10	.05	.025	.01	.005	.0005
	Lovel of Stortficance for Two-Tailled Yest					
41	.20	.10	.05	.02	.01	.001
1	3.078	6.314	12,706	31.821	63.657	636.61
2	1.886	2.920	4.303	6.965	9.925	31.59
3	1.638	2.353	3.182	4.541	5.841	12.94
4	1.533	2.132	2,776	3.747	4.604	8.61
5	1.476	2.015	2.571	3.365	4.032	6.85
6	1.440	1.943	2.447	3.143	3.707	5.95
7	1.415	1.895	2,365	2.998	3.499	5.40
8	1.397	1.860	2,306	2.896	3.355	5.04
9	1.383	1.833	2.262	2.821	3.250	4.78
10	1.372	1.812	2,228	2.764	3.169	4.58
11	1.363	1.796	2,201	2.718	3.106	4.43
12	1,356	1.782	2.179	2.681	3.055	4.31
13	1.350	1.771	2.160	2.650	3.012	4.22
14	1.345	1.761	2,145	2.624	2.977	4.14
15	1.341	1.753	2.131	2.602	2.947	4.07
16	1.337	1,746	2.120	2.583	2.921	4.01
17	1.333	1.740	2.110	2.567	2.898	3.96
18	1.330	1.734	2.101	2.552	2.878	3.92
19	1.328	1.729	2.093	2.539	2.861	3.80
20	1.325	1,725	2.086	2.528	2.845	3.85
21	1.323	1.721	2.090	2.518	2.831	3.81
22	1.321	1.717	2.074	2,508	2.819	3.79
23	1.319	1.714	2.069	2.500	2.807	3.70
24	1.318	1.711	2.054	2.492	2.797	3.74
25	1.316	1.708	2.060	2.485	2.787	3.72
26	1.315	1.706	2.056	2.479	2.779	3.70

3,690