BBA in TM, $3^{\text {nd }}$ Sem.

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

DEPARTMENT OF BUSINESS AND TECHNOLOGY MANAGEMENT

Semester Final Examination
Course No. : Math 4361
Course Title : Mathematics II

Winter Semester, A. Y. 2022-2023
Time $\quad: 3$ hours
Full Marks : 150

Answer all 6 (six) questions. All questions carry equal marks. Marks of each question and corresponding CO and PO are written in the right margin with brackets.

1. a) Evaluate the indefinite integral $\int e^{\prime} \cdot \sin x d x$ through repeated integration by parts.
b) Evaluate the integrals: (i) $\int x^{7} \sqrt{x-1} d x \quad$ (ii) $\int\left(2+\sqrt{9-x^{2}}\right) \mid x$

08 (CO3)
(PO2)
c) Sketch the region whose area is represented by the definite integral $\int_{0}^{1} \sqrt{16-x^{2}} d r$, and evaluate the integral using an uppropriate formula from geometry. Also find the area by using calculus.
2. a) Solve the initial (boundary) value problem $\frac{d y}{d t}=\frac{3}{\sqrt{1-t^{2}}}: \quad y\left(\frac{\sqrt{3}}{2}\right)=0$.
b) Verify Mean Value theorem (MVT) for $f(x)-\sqrt{49 x^{2}}$ in the interval $[-7,3]$.
3. a) Find the area of the region enclosed by $x=2-y^{2}$ and $y=-x$.
b) Find the total area between the curve $y=1-x^{2}$ and the x-axis for the interval $[0,2]$.
4. a) Discuss the fixed-point iteration method for finding a real root of the equation $f(x)=0$. Use this method to find a real root of $f(x)=x^{3}+x^{3}-1=0$ correct up to 2-decimal points.
b) Discuss the Nowton-Raphson's method for finding a real root of the equation $f(x)=0$. Use this method to find a real root of $f(x)=e^{\prime}-x^{2}+3 x-2=0$ in [0, 1] correct upto 2-decimal places.
5. Given points $(x, f(x))$ as $(1,1),(2,8),(3,27),(4,64),(5,125),(6,216), 25$ (7,343) and (8,512) .
(i) Use Newton's Forward difference interpolation formula to find $/ f(2.5)$.
(ii) Use Newton's Backward difference interpolation formula to find $f(7.5)$.
6. a) Derive Euler's Method for solving $\left.\right|^{\text {st }}$ order differential equation. Use this method to solve $\frac{d y}{d x}=x+y, \quad y(0)=1 \quad$ if $\quad x=0.05, \quad x=0,1$ taking $h=0.05$.
b) Derive $2^{\text {nd }}$ order Runge-Kutta Method for solying $1^{\text {st }}$ order ordinary differential equation. Use this method to find,$(0,4)$ from the IVP $5 \frac{d y}{d x}-x^{3}+y^{2}, y(0)=0$ and $\mathrm{h}=0.2$.

