BBA in TM, 3rd Sem.

Date: December 22, 2023 (Morning)

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

DEPARTMENT OF BUSINESS AND TECHNOLOGY MANAGEMENT

Semester Final Examination	Winter Semester, A. Y. 2022-2023		
Course No. : Math 4361	Time : 3 hours		
Course Title : Mathematics II	Full Marks : 150		

Answer all 6 (six) questions. All questions carry equal marks. Marks of each question and corresponding CO and PO are written in the right margin with brackets.

L.	a)	Evaluate the indefinite integral $\int e^x \sin x dx$ through repeated integration by parts.	09	(CO3) (PO2)
	b)	Evaluate the integrals: (i) $\int x^2 \sqrt{x-1} dx$ (ii) $\int \left[2 + \sqrt{9-x^2}\right] dx$	08	(CO3) (PO2)
	c)	Sketch the region whose area is represented by the definite integral $\frac{1}{2}\sqrt{16-x^2}~dx_2$ and	08	(CO3) (PO2)
		evaluate the integral using an appropriate formula from geometry. Also find the area by using calculus.		
2,	a)	Solve the initial (boundary) value problem $\frac{dy}{dt} = \frac{3}{\sqrt{1-t^2}}; y\left(\frac{\sqrt{3}}{2}\right) = 0.$	12.5	(CO3) (PO3)
	b)	Verify Mean Value theorem (MVT) for $f(x) = \sqrt{49 - x^2}$ in the interval [-7, 3].	12.5	(CO3) (PO4)
3.	a)	Find the area of the region enclosed by $x = 2 - y^2$ and $y = -x$.	12.5	(CO3) (PO4)
	b)	Find the total area between the curve $y=1-x^2$ and the x-axis for the interval [0, 2].	12.5	(CO3) (PO4)
4.	a)	Discuss the fixed-point iteration method for finding a real root of the equation $f(x) = 0$. Use this method to find a real root of $f(x) = x^3 + x^2 - 1 = 0$ correct up to 2-decimal points.	12.5	(CO4) (PO4)
	b)	Discuss the Newton-Raphson's method for finding a real root of the equation $f(x) = 0$. Use this method to find a real root of $f(x) = e^{t} - x^{2} + 3x - 2 = 0$ in [0, 1] correct upto 2-decimal places.	12.5	(CO4) (PO4)
5.		Given points $(x, \beta \otimes)$ as (1, 1), (2, 8), (3, 27), (4, 64), (5, 125), (6, 216), (7, 343) and (8, 512).	25	(CO3) (PO4)
		(i) Use Newton's Forward difference interpolation formula to find $f(2.5)$.		

Use Newton's Backward difference interpolation formula to find f(7.5).

- a) Derive Euler's Method for solving 1⁸ order differential equation. Use this method to solve dy/dx² = x + y_x y(θ) = 1 at x = 0.05, x = 0.1 taking h = 0.05. (POS)
 - b) Derive 2^{nd} order Runge-Kutta Method for solving 1nd order ordinary differential equation. Use this method to find y(0,4) from the IVP $5\frac{dy}{dx} = x^3 + y^3$, y(0) = 0 and b = 0.2