ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT)
 ORGANIZATION OF ISLAMIC COOPERATION (OIC)
 DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

Semester Final Examination
Course No.: GS 4353
Course Title: Numerical Methods and Computer Programming

Winter Semester: 2022-2023
Full Marks: 150
Time: $\mathbf{3 . 0}$ hours

There are 6 (six) questions, answer all the questions, Prognammable calculators are not allowed, Do not write on this question paper. The figures in the right margin indicate full marks and corresponding CO and PO . Symbols convey their usual meanings. Assume reasonable values for any missing data/info.

1. (a) State the names of Open methods and Bracketing methods used to determine the roots of equation. How is the Open method different from the Bracketing method? Explain with diagrams.
(b) Use Bisection method to find a root of the equation: $f(x)=x^{2}-\sin x-0.5$ within a range between 0 and $2 .\left(\varepsilon_{s}=10^{-3}\right) \%$
(c) Use Newton-Raphson method to find the root of the equation:
$f^{\prime}(x)=2 x^{3}-2.5 x-5$
Using an initial guess of $x=2 .\left(\varepsilon_{s}=10^{-4}\right) \%$. Also, determine the true root of the equation.
2. (a) Use Euler's method to numerically integrate $\frac{d y}{d x}=\frac{y \ln y}{x}$ from $x=0$ to $x=2$ using step size of 0.5 . Find true errors for each step. Use initial value i.e., $y(0)=1$.
(b) Use midpoint method to solve $\frac{d y}{d x}=-2 y+4 e-x$
from $x=0$ to 1 using a step size of 0.2 where $y(0)=2$. Find true error for each step.
3. (a) Describe Declarative Knowiedge and Imperative Knowledge in computational problem-solving using example of finding square root of a number.
(b) Develop a python program that uses Bisection search algorithm to find the root of any number for any given power. Write the script as a function.
(c) Now, write the output of algorithm considering the number is 0.55 , power 3 and $\varepsilon s=0.01$. Describe at least two steps.
4. (a) Graphically compare a low-level and a high-level programming language.
(b) Define the following: (i) Objects, (ii) Expressions, (iii) Syntax \& (iv) Semantics
(c) Develop a python program that uses Newton-Raphson algorithm to find the root of the equation $f(x)=x^{2}$. Consider an allowable error of 0,01 .
5. A programmer with civil engineering background has created two python modules saving by the names "circular_beam.py" and "square_beam.py" in same folder naming "Python" regarding geometric properties of a circular beam and square beam as shown below:
i) circular_beam.py
```
pi=3.1416
length=1
def circumference(radius):
    retum 2*pi*radius
def area(radius):
    return pi*(radius**2)
def volume(radius, length):
    retum area (radius) * length
```

ii) square beam.py

```
length = 4
def area(width_or_height);
    return width_or_height**2
def volume(width_or_height, length):
    rcturn area(width_or_height)*length
```

Write down the output of each expression given below in a sequential manner by writing beside the expression.
A. import circular_beam
H. print(circular beam.volume(7,length))
B. print(pi)
C. print(circular beampi)

1. from circular_beam import*
D. $\mathrm{pi}=3.0$
J. $p i$
E. import square_beam
K. area(10)
F. primt(circular_beam.area(5))
L. Square_beam.volume(3, length)
G. print(square_beam.volume $(5,4)$
M. length $=10$
N. volume(3,length)

6 (a) Describe how to use Bubble Sort. Demonstrate graphically.
(b) Define (i) Tuples, (ii) Debugging, (iii) List and (iv) Class
(c) Write a short python code for calculating "Fibonacci Numbers" up to value x.

