Name of the Program: B. Sc. in CEE
Date: 15 December, 2023
Semester: $3^{\text {nt }}$

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT)
 ORGANISATION OF ISLAMIC COOPERATION (OIC) DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

Semester Final Examination
Course Number: EEE 4385
Course Title: Electrical and Electronic Technology

Winter Semester: 2022-2023
Full Marks: 150
Time: 3 Hours

There are 10 (ten) questions. Answer all 10 (ten) questions. The symbols have their usual meanings, Marks of each question and corresponding CO and PO are written in the brackets.

1. For an AC circuit, show that the maximum power that can be transferred to the load will be

$$
\begin{equation*}
P_{\max }=\frac{\left|V_{t h}\right|^{2}}{8 R_{t h}} \tag{15}
\end{equation*}
$$

2. In the circuit shown in Figure 2, find the value of R_{L} that will absorb the maximum average
power. Calculate that power.

Figure 2
3. Find V_{0} in the circuit in Figure 3 using the superposition theorem.

Figure 3
4. Find the Thevenin equivalent of the circuit in Figure 4 as seen from terminals $a-b$.

Figure 4
5. When connected to a 120 V (rms), 60 Hz power line, a load absorbs 4 kW at a lagging power factor of 0.8 . Find the value of eapacitance necessary to raise the pf to 0.95 .
6. Explain different types of power. Define power factor and power triangle. State the maximum and the minimum value of the power factor. How can we correct the power factor?
7. Using Norton's theorem, find R_{N} and J_{N} of the circuit in Figure 7 at terminals a-b

Figure 7
8. Find V_{C}, I_{L} and the energy stored in the capacitor and inductor in the circuit of Figure 8 under dc conditions.

Figure 8
9. Find for Vo in the circuit in Figure 9 using mesh analysis.

Figure 9
10. Find V_{1}, V_{2} and V_{3} in the circuit in Figure 10 using nodal analysis.

Figure 10

