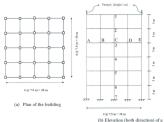


B. Sc. Engg. (CEE)/5th Semester

15th December 2023/Afternoon

typical interior frame


ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) DEPARTMENT OF CIVIL AND ENVIRONMENTAL FORDINFERING

The state of the s

Final Examination Course Number: CEE 4513 Course Title: Structural Analysis and Design I Winter Semester: 2022–2023 Full Marks: 200 Time: 3 Hours

There are 5 (five) questions. Answer all of them. The symbols have their usual meanings. Marks of each question and corresponding CO and PO are written in brackets. Assume any reasonable value if required.

1. A typical 6-storied residential IRC building is situated at a flat termine of Cox's 8 lazar. The dimension of the building building is 10 m = 30 m. The amount of the building casciding paragree is 18 m. Paragret beight is 1 m. Plan and the elevations of the building are shown in the control of the stories of the control of the stories of the s

Answer the following questions:

(a) Assuming that the building is classified as OPEN, calculate the wind load CO2, PO2: [25] distribution (both windward and leeward direction) for a typical interior frame for Wind towards X direction using analytical procedure. Follow BNBC 2020 for your calculation. The following formula can be used for calculating velocity pressure $K_z = 2.01 \text{ (z/z_e)}^{2/n} \text{ for } 4.57 \text{ m} \le z \le z_e, \text{ where } z_g = 213.36 \text{ m} \text{ and } \alpha = 11.5$ $K_z = 2.01 (4.57/z_0)^{2/a}$ for $z \le 4.57$ m

$$z=2.01~(z/z_g)^{2/n}$$
 for 4.57 m \leq z \leq z_g, where z_g = 213.36 m and $\alpha=11.5$ = 2.01 $(4.57/z_g)^{2/n}$ for z \leq 4.57 m

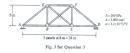
- (b) Calculate the floor-wise shear force distribution and storey shears at each level of CO2, PO2: [25]
 - the building. Given, structural system is IMF, each storey height is 3 m, site class is SC, seismic zone coefficient (Z) = 0.28, Importance factor (I) = 1.0. Response modification factor (R) = 5 and Damping correction factor (η) = 1.2. Follow BNBC 2020 for your calculation. Use the following loads for calculating the building
 - Dead load and partition wall load = 12 kN/m² for all floors.
 - Live load for typical floor is 2.0 kN/m² including ground floor. III. Live load in the roof is 1 kN/m².

IV. Self-weight of all pedestals is 120 kN.

 $C_{S} = S \Bigg[1 + \frac{T}{T_{-}} \left(2.5 \, \eta - 1 \, \right) \Bigg] \text{ for } \qquad 0 \leq T \leq T_{\overline{B}} \qquad \qquad \text{Table 6.216: She Dependent Set Future and Other Equations: Defining Plants Responses Techniques (Control of the Control of the C$

$C_S=2.5S\eta$	for $T_B \le T \le T_C$
	for $T_C \le T \le T_D$
$C_S = 2.5 S_{\overline{q}} \left(\frac{T_C}{T} \right)$	$\left(\frac{T_D}{2}\right)$ for $T_D \le T \le 4$ sec

Soll type	3	760	7:00	75(0)
	1.0	0.15	0.43	2.0
58	1.2	0.15	0.50	2.0
SC	1.15	0.20	0.60	2.0
.50	1.35	0.20	0.80	2.0
32	1.4	0.15	0.50	2.0


- (c) For the wind load distribution obtained for windward direction in Question 1.(a). CO3, PO2: [25] draw SFD and BMD of "A-B-C-D-E" beam shown in Fig. 11b). Assume that all columns have the same cross-sectional area. Use cantilever method for your
- (d) For the vertical loads given in Question 1(b), draw (a) shear force and and (b) CO3, PO2: [25] bending moment diagram of the column "1-2-3-4-5-6-7" shown in Fig. 1(b).
- Determine the reactions and draw the shear and bending moment diagrams for the CO3, PO2: [25] structures shown in Fig. 2.

or

Determine the reactions and the force in each member of the truss shown in Fig. 3 due to a temperature drop of 25°C in members AB, BC, and CD and a temperature increase of 60°C in member EF. Use the method of consistent deformation.

or

Determine the reactions and the force in each member of the trusses shown in $\underline{\it Fig.~4}$ using the method of consistent deformations. Given, E=29000~ksi

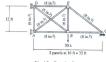
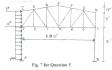


Fig. 4 for Question 3

Fig. 5 for Question 4


or

Draw Influence line diagram for the bar forces of members "IC", "ID", "CD" and "JD" of the truss shown in $\underline{Fig. 6}$.

Fig. 6 for Question 4

Determine the member forces GM, MN, and FP. Apply necessary assumptions as CO3, PO2: [25] required. Also, (a) draw shear force and (b) bending moment diagram of the column AJI.

Page 4 of 4