ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT)
 ORGANISATION OF ISLAMIC COOPERATION (OIC)
 DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

Final Examination

Course Number: CEE 4513
Course Title: Structural Analysis and Design I

Winter Semester: 2022-2023
Full Marks: 200
Time: 3 Hours

There are 5 (five) questions. Answer all of them. The symbols have their usual meanings. Marks of each question and corresponding CO and PO are written in brackets. Assume any reasonable value if required.

1. A typical 6-storied residential RC building is situated at a flat terrain of Cox's Bazar. The dimension of the building plan is $30 \mathrm{~m} \times 30 \mathrm{~m}$, height of each storey is 3 m and overall height of the building excluding parapet is 18 m . Parapet height is 1 m . Plan and the elevations of the building are shown in Fig. . Occupancy category is II, exposure category is C, and the importance factor is 1.0. Basic wind speed of Cox's Bazar is $80 \mathrm{~m} / \mathrm{s}$. Gust effect (G) is 0.85 . External pressure coefficient $\left(C_{p}\right)$ is 0.8 for windward wall and -0.5 for leeward wall. The combined net pressure coefficient for windward parapet is 1.5 and for leeward parapet is -1.0 .

(b) Elevation (both direction) of a typical interior frame
Fig. 1 for Question 1

Answer the following questions:

(a) Assuming that the building is classified as OPEN, calculate the wind load distribution (both windward and leeward direction) for a typical interior frame for Wind towards X direction using analytical procedure. Follow BNBC 2020 for your calculation. The following formula can be used for calculating velocity pressure exposure coefficient $\left(K_{z}\right)$.

$$
\begin{aligned}
& K_{z}=2.01\left(2 / \mathrm{z}_{\mathrm{g}}\right)^{2 / \alpha} \text { for } 4.57 \mathrm{~m} \leq \mathrm{z} \leq \mathrm{z}_{\mathrm{g}}, \text { where } \mathrm{z}_{\mathrm{g}}=213.36 \mathrm{~m} \text { and } \alpha=11.5 \\
& K_{z}=2.01\left(4.57 / \mathrm{z}_{\mathrm{g}}\right)^{2 / \mathrm{u}} \text { for } \mathrm{z} \leq 4.57 \mathrm{~m}
\end{aligned}
$$

(b) Calculate the floor-wise shear force distribution and storey shears at each level of the building. Given, structural system is IMF, each storey height is 3 m , site class CO2, PO2: [25] is SC , seismic zone coefficient $(Z)=0.28$, Importance factor $(I)=1.0$, Response modification factor $(R)=5$ and Damping correction factor $(\eta)=1,2$. Follow BNBC 2020 for your calculation. Use the following loads for calculating the building
weight.
I. Dead load and partition wall load $=12 \mathrm{kN} / \mathrm{m}^{2}$ for all floors.
II. Live load for typical floor is $2.0 \mathrm{kN} / \mathrm{m}^{2}$ including ground floor.
III. Live load in the roof is $1 \mathrm{kN} / \mathrm{m}^{2}$.
IV. Self-weight of all pedestals is 120 kN .
$C_{s}=S\left(1+\frac{T}{T_{B}}(2.5 \eta-1)\right)$ for $0 \leq T \leq T_{B}$
Table 6.216 Sto Depedmt Sal Fartor and Oter Panseners Defing Flatic Response Sabtrin
$C_{s}=2.5 S \eta \quad$ for $\quad T_{B} \leq T \leq T_{C}$
$C_{s}=2.5 S \eta\left(\frac{T_{C}}{T}\right) \quad$ for $\quad T_{C} \leq T \leq T_{D}$
$C_{s}=2.5 S_{\eta}\left(\frac{T_{C} T_{D}}{T^{2}}\right)$ for $T_{D} \leq T \leq 4 \mathrm{sec}$
(c) For the wind load distribution obtained for windward direction in Ouestion I (a), draw SFD and BMD of "A-B-C-D-E" beam shown in Fig, 1(b). Assume that all columns have the same cross-sectional area. Use cantilever method for your analysis,
(d) For the vertical loads given in Question 1(b), draw (a) shear force and and (b) CO3, PO2: [25] bending moment diagram of the column "1-2-3-4-5-6-7" shown in Fig. 1(b).
2. Determine the reactions and draw the shear and bending moment diagrams for the CO3, PO2: [25]
structures shown in Fig. 2.

or

Fig. 2 for Question 2
3. Determine the reactions and the force in each member of the truss shown in Fig .3 due to a temperature drop of $25^{\circ} \mathrm{C}$ in members AB, BC, and CD and a temperature increase of $60^{\circ} \mathrm{C}$ in member EF. Use the method of consistent deformations.

Fig. 3 for Question 3

or

Determine the reactions and the force in each member of the trusses shown in Fig. 4 using the method of consistent deformations. Given, $\mathrm{E}=29000 \mathrm{ksi}$

Fig. 4 for Question 3
4. Draw the (a) shear force and (b) bending moment diagrams of the girder ABC as shown in Fig. 5.

Fig. 5 for Question 4

or

Draw Influence line diagram for the bar forces of members "IC", "ID", "CD" and "JD" of the truss shown in Fiz. 6.

Fig. 6 for Question 4
5. Determine the member forces $\boldsymbol{G M}, \boldsymbol{M N}$, and $\boldsymbol{F P}$. Apply necessary assumptions as CO3, PO2; [25] required. Also, (a) draw shear force and (b) bending moment diagram of the column AJI.

Fig. 7 for Question 5

