## ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

Semester Final Examination Course Number: CEE 4735 Winter Semester: 2022 - 2023 Full Market 150 Time: 03 Hours

Mark

18

Course Title: Environmental Pollution and Its Control There are 06 (six) questions. Answer all questions. Programmable calculators are not allowed. Do

not write on this questions paper. The symbols have their usual meaning. Assume reasonable data if needed

 Select appropriate mechanism for the following situations: COL POI In an industrial area with a previous record of chemical spills and

improper waste handling, the soil of the adjacent area is contaminated with volatile compounds. Suggest a viable control mechanism for soil remediation in this scenario. ii. A manufacturing factory located near a stream utilizes steam

turbines as part of its production activities and thus generates heat wastes. The environmentalists are concern about thermal shock on aquatic life and it is required to set up a control mechanism with

A lake with surface area equal to 80 x 106 m<sup>2</sup> is fed by a stream baying an CO2 PO2 average flow of 15.0 m3/s and an average total phosphorus concentration of 0.010 mg/L. The phosphorus settling rate is estimated at an average of 9 to 12 m/year. In addition, treated effluent from a wastewater treatment plant adds 0.20 m3/s of flow having 5.0 mg/L total phosphorus. The temperature of the lake was 16°C whereas the effluent had a temperature twice of that, BODs for the lake and the effluent are 50 mg/L and 3.5 mg/L respectively.

At 20°C, the deoxygenation rate constant is 0.23d-1. Based on the above scenario, answer the following questions (i), (ii) and

Estimate the average total phosphorus concentration and predict the productivity of the lake.

What rate of phosphorus removal at the wastewater treatment plant would be required to keep the concentration of phosphorus in the lake at an acceptable level of 0.010 mg/L?

Find out the amount of BOD remaining after 1 day of mixing of the effluent with lake.

| 2 | a)  | Answer the following questions (t), (1) and (1)11 miles.  i. Describe they persistent organic pollutants are considered chemicals of global concern.  ii. State the factors upon which the self-purification of pathogens depends on.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .01 | 101 |    |
|---|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|----|
|   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 03  | PO2 | 30 |
|   | b)  | secondary efflores to a surface stream, The WastewandL and Lampenume (III), disolved oncy pm (DO) consenting and an advantagement of 24°C. The atomic of 24°C. Complete mixture of 16°C. Complete mixture of 16°C. Complete mixture of 16°C. The atomic of 24°C. The atomi |     |     |    |
|   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |    |
|   | 3 a | List the control mechanisms for noise level at the following zones                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CO1 | PO1 | 4  |
|   |     | machine manufacturing industry     commercial areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | nos |    |
|   | b   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CO2 | PO2 |    |
|   |     | is reduced to half?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO2 | PO2 | 11 |
|   | c   | the average noise level from a two-tane ingularly is located 40 m from the centerline. The ground between the highway and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |     |    |
|   |     | receiver is a grassy field.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |     |    |
|   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |    |
|   |     | Demonstrate the changes of sound with a diagram when a course.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |     |    |
|   |     | placed on a transmission path.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |     |    |

2 a) Answer the following questions (i), (ii) and (iii) in brief:

CO1 PO1

Compute the loss of noise level due to the presence of a barrier in the transmission path if only one-third of the noise striking the

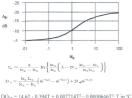
barrier is transmitted.

|   | d)       | After conducting a survey for noise level data collection at a classroom for one bour, the following data have been acquired from statistical analysis. 1.10 = 78 dBA. 1.50 = 63 dBA. 1.50 = 63 dBA. Based on the data provided above, answer the following questions (i) and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CO2 | PO2 | 6  |
|---|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|----|
|   |          | <ul> <li>Analyze the significance of the three statistical terms L10, L50 and L90 related to fluctuations of noise level.</li> <li>Compute the equivalent noise level and range of noise fluctuation of the classroom.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |     |    |
| 4 |          | A residential area is adjacent to a two-lane road made of modernely absorptive material (a ~ 0.73) with a sidewall measuring 6.1 feet in height. Distance from the center line of the furthest lane to the receiver is 75 ft. Consider receiver height at onal evel. The information related to the traffic volume and vehicle speed are listed below:  Auto ~ 350 typhen 49 mph. Medium i Trook MOT ~ 9 st. phalmer. 49 mph. Medium i Trook MOT ~ 9 st. phalmer. 49 mph. Lane width ~ 24.0 + 136 v. phalmer. 35 mph. Lane width ~ 24.1 - 136 v. phalmer. 35 mph.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO3 | PO2 | 25 |
| 5 | a)<br>b) | Predict the total equivalent noise level based on above scenario explaining the factors behind the attenuation of rose.  A 15-m-long settling chamber with a height of 2.5 m operates at a bottomial gas vectory of 1 ms. <sup>2</sup> . The density of particles that are to be removed in the settling chamber is 2100 kgm. <sup>2</sup> /. Assuming plug flow characteristics and a flow gas dynamic vectority of 1.8x10 <sup>2</sup> / kgm. <sup>2</sup> /. Assuming plug flow the characteristics and a flow gas dynamic vectority of 1.8x10 <sup>2</sup> / kgm. <sup>2</sup> /. With characteristics and a flow gas dynamic vectority of 1.8x10 <sup>2</sup> / kgm. <sup>2</sup> /. With characteristics and of 10-ps.  With characteristics and a flow gas dynamic vector of 10-ps. 100 kgm. <sup>2</sup> / | CO3 | PO2 | 8  |
|   | c)       | Write down the classification of pollutants.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | COL | POI | 5  |
| 6 | a)       | An environmental pollution management trategy for a power plant first considered using a settling elamatic pollution. The volumetric flow is 1 of myle. Debut a perfectionle-filled air stream. The volumetric flow is 1 of myle. Debut a perfection for mit of myle. The volumetric flow is 1 of myle. The chamber is to be 2.5 m in width and 1.5 m in height. Assume dynamic viscosity of 1500 kg/m <sup>2</sup> . The chamber is to be 2.5 m in width and 1.5 m in height. Assume dynamic viscosity of 1.500 kg/m <sup>2</sup> . The chamber is to be 2.5 m in width and 1.5 m in height. Assume dynamic viscosity of 1.500 kg/m <sup>2</sup> . The chamber is to be 2.5 m in width and 1.5 m in height. Assume dynamic viscosity of 1.500 kg/m <sup>2</sup> . The chamber is to be 2.5 m in width and 1.5 m in height. Assume dynamic viscosity of 1.500 kg/m <sup>2</sup> . The chamber is to be 2.5 m in width and 1.5 m in height. Assume dynamic viscosity of 1.500 kg/m <sup>2</sup> . The chamber is to be 2.5 m in width and 1.5 m in height. Assume dynamic viscosity of 1.500 kg/m <sup>2</sup> . The chamber is to be 2.5 m in width and 1.5 m in height. Assume dynamic viscosity of 1.500 kg/m <sup>2</sup> . The chamber is to be 2.5 m in width and 1.5 m in height. Assume dynamic viscosity of 1.500 kg/m <sup>2</sup> . The chamber is to be 2.5 m in width and 1.5 m in height. Assume dynamic viscosity of 1.500 kg/m <sup>2</sup> . The chamber is to be 2.5 m in width and 1.5 m in height. Assume dynamic viscosity of 1.500 kg/m <sup>2</sup> . The chamber is to be 2.5 m in width and 1.5 m in height. Assume dynamic viscosity of 1.500 kg/m <sup>2</sup> . The chamber is to be 2.5 m in width and 1.5 m in height. Assume dynamic viscosity of 1.500 kg/m <sup>2</sup> . The chamber is to be 2.5 m in width and 1.5 m in height. Assume dynamic viscosity of 1.500 kg/m <sup>2</sup> . The chamber is to be 2.5 m in width and 1.5 m in height. Assume dynamic viscosity of 1.500 kg/m <sup>2</sup> . The chamber is the 2.5 m in height. Assume dynamic viscosity of 1.500 kg/m <sup>2</sup> . The chamber is the 2.5 m in height. Assume dynamic viscosity of 1.500 kg/m <sup>2</sup> . The chamber is the 2.5 m in height. Assume dynamic viscosity of 1.500 kg/m <sup>2</sup> . The 2.5 m in h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | PO3 | 9  |
|   |          | particles with the same density.  iii. Draw the schematic diagram of the settling chamber.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |     |    |
|   | b)       | What is role of emissions inventory in air pollution?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | COL | PO1 | 5  |
|   | c)       | What is good ozone and bad ozone?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | COI | PO1 | 5  |
|   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |    |

# Necessary Formulae

### Heavy Trucks: 25-31 mph (40-50 km/h):

REMEL=51.9+19.2Log<sub>10</sub>(Speed, mph) or 47.9+19.2Log<sub>10</sub>(Speed, km/h) 35-65 mph: (56-105 km/h):


REMEL=50.4+19.2Log<sub>10</sub>(Speed, mph) or 46.4+19.2Log<sub>10</sub>(Speed, km/h) 31-35 mph: (50-56 km/h): REMELS=Aprevoximately 80 dBA

## Medium Trucks:

REMEL=35.3+25.6Loggs(Speed, mph) or 30.0+25.6Loggs(Speed, km h)

REMEL=5.2+38.8Loggs(Speed, mph) or -2.8+38.8Loggs(Speed, km h)

REMELS is measured individually fee HT, MT and Auto.



DO<sub>st</sub> = 14.62 - 0.3941 + 0.007/141\*-0.00006461\* 1 in \*0