ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) Department of Computer Science and Engineering (CSE)

SEMESTER FINAL EXAMINATION DURATION: 3 HOURS

WINTER SEMESTER, 2022-2023
FULL MARKS: 150

Phy 4141: Physics I

> Programmable calculators are not allowed. Do not write anything on the question paper. Answer all 6 (six) questions. Figures in the right margin indicate full marks of questions whereas corresponding CO and PO are written within parentheses.

1. a) State the relationship between electric field and electric potential.
b) For an electric dipole, demonstrate that if you double the distance of a point from a dipole center, the electric field at that point drops by a factor of 8 .

c) The drum of a photocopying machine has a length of 42 cm and a diameter of 12 cm . The
electric field just above the drum's surface is $2.3 \times 10^{5} \mathrm{~N} / \mathrm{C}$.

i. What is the total charge on the drum?

ii. The manufacturer wishes to produce a desktop version of the machine. This requires
reducing the drum length to 28 cm and the diameter to 8 cm . The electric field at the
drum surface must not change. Compute the charge on this new drum.
2. a) Draw a graph of binding energy per nucleon, E versus atomic mass number, A. Identify the important features of the graph.
b) Distinguish between nuclear fission and fusion reactions.
ii. Energy released in the fission of a single Uranium- 235 nucleus is 200 MeV . What is the
source of such a huge amount of energy? Explain.
iii. Illustrate how a nuclear fission reaction can be controlled.
c) Calculate the binding energy per nucleon of ${ }_{15}^{30} P$ and ${ }_{15}^{31} P$. Which one is more stable and why? (Given: Mass of proton $=1.0078 \mathrm{amu}$, Mass of neutron $=1.0087 \mathrm{amu}$, Mass of ${ }_{15}^{30} P=29.978$ amu , and Mass of ${ }_{15}^{31} P=30.974 \mathrm{amu}$).
3. a) Show diagrammatically the behavior of magnetic field lines in the presence of paramagnetic and diamagnetic substances. How does one explain this distinguishing feature?
b) Discuss and compare the properties of diamagnetic, paramagnetic, and ferromagnetic ma-
terials.
c) Applying Ampere's circuital law, derive a mathematical expression for the magnetic field due to current carrying wire.
4. a) State the Faraday's laws of electromagnetic induction.
b) Explain the growth and decay of current in an LR circuit. Discuss the term "inductive time constant" with a graphical representation for both cases.
c) A network of four capacitors, each of $12 \mu \mathrm{~F}$ capacitance is connected with a power supply of 500 V as shown in Figure 1. Determine the equivalent capacitance of the combination and charge on each capacitor.

Figure 1: A network of four capacitors for Question 4.c)
5. a) Define diffraction of light. List five differences between Fresnel and Fraunhofer diffraction.
b) Discuss the phenomena of diffraction produced by a single slit or aperture of thickness a, where a plane wave is incident on the aperture. Write down the trigonometric equation that gives the distance of the $n^{\text {th }}$ dark fringe from the center based on Figure 2. Extend your answer to derive the width of the central bright fringe.

Figure 2: Single slit diffraction for Question 5.b)
c) Unpolarized light in air is reflected from a glass surface in such a way that it is completely polarized. The angle of incidence is 51°. Calculate the refractive index of the glass and the angle of refraction. What will be the speed of light in glass?
6. a) Describe Newton's corpuscular theory. Why does this theory fail to explain the properties of light?
b) Discuss Thomas Young's double-slit experiment with geometrical analysis. Summarize the
conditions for observing the bright and dark fringes as a result of this experiment.
c) Interference fringes are observed with a biprism of refracting angle 1° and refractive index between the source and the biprism is 20 cm , compute the fringe width.

