B.Sc. Eng. CSE 1st Semester

05 December 2023 (Afternoon

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) Department of Computer Science and Engineering (CSE)

SEMESTER FINAL EXAMINATION DURATION: 3 HOURS WINTER SEMESTER, 2022-2023 FULL MARKS: 150

Phy 4141: Physics I

Programmable calculators are not allowed. Do not write anything on the question paper. Answer all 6 (kix) questions. Figures in the right margin indicate full marks of questions whereas corresponding CO and PO are written within parentheses.

1.	a) State the relationship between electric field and electric potential.	(CO1) (PO1)
	b) For an electric dipole, demonstrate that if you double the distance of a point from a dipole center, the electric field at that point drops by a factor of 8.	ole 15 (CO2) (PO1)
	(c) The dram of a photocopying machine has a length of 42 cm and a diameter of 12 cm. T electric field just above the dram's variatives is 2.3 × 10° N/C. i. What is the total charge on the dram? ii. The machineture winkets powers a destaye variation of the machine. This requi- reducing the dram length to 32 cm and the diameter to 8 cm. The electric field at dram market must not change. Compute the charge on this new dram.	2.5 (CO3) res (PO1)
2	 Draw a graph of binding energy per nucleon, E versus atomic mass number, A. Identify important features of the graph. 	the 5 (CO1) (PO1)
	 b) i. Distinguish between nuclear fission and fusion reactions. ii. Energy released in the fission of a single Uranium-235 nucleus is 200 MeV. What is source of such a huge amount of energy? Explain. iii. Illustrate how a nuclear fission reaction can be controlled. 	5 + 7 + 3 (CO2) (PO1)
	c) Calculate the binding energy per nucleon of ${}^{31}_{15}P$ and ${}^{31}_{15}P$. Which one is more stable and w (Given: Mass of proton = 1.0078 amu, Mass of neutron = 1.0087 amu, Mass of ${}^{35}_{15}P$ = 29: amu, and Mass of ${}^{31}_{15}P$ = 30.974 amu).	hy? 3 + 2 978 (CO3) (PO1)
3	3. a) Show diagrammatically the behavior of magnetic field lines in the presence of paramagn and diamagnetic substances. How does one explain this distinguishing feature?	etic 5 (CO1) (PO1)
	b) Discuss and compare the properties of diamagnetic, paramagnetic, and ferromagnetic terials.	ma- 15 (CO2) (PO1)
	 c) Applying Ampere's circuital law, derive a mathematical expression for the magnetic f due to current carrying wire. 	field 5 (CO3) (PO1)
ļ	4. a) State the Faraday's laws of electromagnetic induction.	(CO1)

 b) Explain the growth and decay of current in an LR circuit. Discuss the term "inductive time 12+3 constant" with a graphical representation for both cases. (PO1)

c) A network of four capacitors, each of 12 µF capacitance is connected with a power supply of 500 V as shown in Figure 1. Determine the equivalent capacitance of the combination and charge on each capacitor.

Figure 1: A network of four capacitors for Question 4.c)

a) Define diffraction of light. List five differences between Fresnel and Fraunhofer diffraction. 2+3

(CO1) (PO1)

b) Discuss the phenomena of diffraction produced by a single slit or aperture of thickness a, 2+ where a plane wave is incident on the aperture. Write down the trigonometric equation that 7+6 gives the distance of the nth dark fringe from the center based on Figure 2. Extend your (CO2) answer to derive the width of the central bright fringe. (PO1)

Figure 2: Single slit diffraction for Question 5.b)

c)	Unpolarized light in air is reflected from a glass surface in such a way that it is completely polarized. The angle of incidence is 51°. Calculate the refractive index of the glass and the angle of refraction. What will be the speed of light in glass?	5 (CO3) (PO1)
a)	Describe Newton's corpuscular theory. Why does this theory fail to explain the properties of light?	5 (CO1) (PO1)
b)	Discuss Thomas Young's double-slit experiment with geometrical analysis. Summarize the conditions for observing the bright and dark fringes as a result of this experiment.	2× 7.5 (CO2) (PO1)
c)) Interference fringes are observed with a biprism of refracting angle 1° and refractive index 1.8 on a screen 120 cm away from it. The wavelength of light used is 5800 Å. If the distance between the source and the biprism is 20 cm, compute the fringe width.	5 (CO3) (PO1)