ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) Department of Computer Science and Engineering (CSE)

SEMESTER FINAL EXAMINATION

WINTER SEMESTER, 2022-2023 DURATION: 3 HOURS

FULL MARKS: 200
Math 4141: Geometry and Differential Calculus
Programmable calculators are not allowed. Do not write anything on the question paper. Answer all 8 (eight) questions. Figures in the right margin indicate full marks of questions whereas corresponding CO and PO are written within parentheses.

1. a) Find the relative extrema of the function $f(x)=3 x^{5}-5 x^{3}$.
b) Locate the critical points for the function $f(x)=\sqrt{\left(x^{2}-25\right)}$, and identify which critical points are stationary.
c) A baseball diamond is a square whose sides are 90 ft long shown in Figure 1. Suppose that a player running from second base to third base has a speed of $30 \mathrm{ft} / \mathrm{s}$ at the instant when he is 20 ft from third base. At what rate is the player's distance from home plate changing at that instant?

Figure 1: Baseball diamond for Question 1.c)
2. a) The direction cosines of a moving line in two adjacent positions are l, m, n and $l+\delta l, m+$ $(\delta m)^{2}+(\delta n)^{2}$.13
b) A variable plane is at a constant distance p from the origin and meets the axis in A, B, C. Through A, B, C planes are drawn parallel to the co-ordinates planes. Show that the locus of their point of intersection is $x^{-2}+y^{-2}+z^{-2}=p^{-2}$.
4. a) Prove that the equation:

$$
x^{2}+6 x y+9 y^{2}+4 x+12 y-5=0
$$ represents a pair of parallel lines.

b) If the pair of straight lines $x^{2}-2 a x y-y^{2}=0$ and $x^{2}-2 b x y-y^{2}=0$ be such that each pair
5. a) Find the radical centre of the following three circles:

$$
\begin{array}{r}
x^{2}+y^{2}+x+2 y+3=0 \\
x^{2}+y^{2}+2 x+4 y+5=0 \\
x^{2}+y^{2}-7 x-8 y-9=0
\end{array}
$$

b) Find the equations of the circle through the intersections of the circles:

$$
\begin{align*}
& x^{2}+y^{2}+5 x+6 y+7=0 \tag{CO1}\\
& x^{2}+y^{2}+4 x+3 y+2=0 \tag{PO1}
\end{align*}
$$

whose centre lies on the line $x+3 y+5=0$.
c) The line joining the origin to the point $P(2,3)$ is the diameter of a circle which cuts the lines $5 x^{2}-12 x y+3 y^{2}=0$ at Q and R. Find the combined equation of the lines $P Q$ and $P R$.
6. a) Find the $n^{\text {th }}$ derivative of $\tan ^{-1} \frac{x}{a}$.
b) If $y=\left(\sin ^{-1} x\right)^{2}$, prove that $\left(1-x^{2}\right) y_{2}-x y_{1}-2=0$ and deduce that
$\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-n^{2} y_{n}=0$. Also find $y_{n}(0)$.
7. a) Use implicit differentiation to find $\frac{d y}{d x}$ for the Folium of Descartes $x^{3}+y^{3}=3 x y$.
b) Find an equation for the tangent line to the Folium of Descartes at the point $\left(\frac{3}{2}, \frac{3}{2}\right)$.
c) At what point(s) in the first quadrant is the tangent line to Folium of Descartes horizontal?
8. a) Find the absolute maximum and minimum values of $f(x)=4 x^{2}-12 x+10$ on the closed interval $[1,2]$, and state where those values occur.
(CO2)
(PO1) What size should the squats be to obtain a box with the largest volume?
b) If $f(x)=x^{2}-8 x+15$, verify that for the hypotheses of Rolle's Theorem are satisfied on the interval $[3,5]$, and find all value(s) of c in that interval that satisfy the conclusion of the theorem.

Figure 2: Cardboard box diagram for Question 8.c)

