B.Sc. Engg. CSE 3rd Semester

22 December 2023 (Afternoop

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) Department of Computer Science and Engineering (CSE)

SEMESTER FINAL EXAMINATION DURATION: 3 HOURS WINTER SEMESTER, 2022-2023 FULL MARKS: 150

Math 4341: Linear Algebra

Programmable calculators are not allowed. Do not write anything on the question paper. Answer all 6 (six) questions. Figures in the right margin indicate full marks of questions whereas corresponding CO and PO are written writin parentheses.

a) Let $a, b \in \mathbb{R}$, and let

	[1	2	3	a
A=	1	0	3 1 2	0
	0	1	2	b

- What are the dimensions of the four subspaces associated with the matrix A? These
 values will depend on the values of a and b, and you should distinguish all cases.
- For a = b = 1, give a basis for the columnspace of A. Is this also a basis for R³? Justify your answer.
- b) Let T : R² → R² be the linear transformation satisfying:

$$T\begin{pmatrix} 1\\ 0\\ \end{bmatrix} = \begin{bmatrix} -4\\ 3 \end{bmatrix}$$
 and $T\begin{pmatrix} 1\\ 1\\ \end{bmatrix} = \begin{bmatrix} -10\\ 8\\ \end{bmatrix}$. (C01)
(P01)

Find $T\left(\begin{bmatrix} 0\\1 \end{bmatrix} \right)$.

a) If you convert matrix A (shown below) to row-reduced echelon form by the usual row elim20
ination steps, you will achieve R = rref(A) as:
(CO)
(CO)

	[1	2	1	-7]		[1	2	0	2]
A=	2	4	1	-5	 R =	0	0	1	-9
	1	2	2	-16		0	0	0	$\begin{bmatrix} 2 \\ -9 \\ 0 \end{bmatrix}$

- i. What are the minimum and the maximum number of columns of A that form a dependent and independent set of voctors, respectively?
- ii. Give an orthonormal basis for the rowspace of A. Note that, it is not C(A).
- iii. Given the vector b = (2 5-9 3)^T, compute a vector p that is closest to b in the rowspace C(A^T).
- In terms of your calculated p in Question 2.a)iii., what is the closest vector to b in the nullspace N(A)?
- b) What is the value of the following determinant for any values of a, b and c?
 - 1 1 1 1 (COI) (POI)

$$a \quad b \quad c$$

+ $c \quad c$ + $a \quad a$ + b

 a) Imagine a plane z = Cx + Dy + E that is closest (in the least squares sense) to these four (PO1)

At x = 1: y = 0 measurement gives z = 1At x = 1; y = 2 measurement gives z = 3At x = 0; y = 1 measurement gives z = 5At x = 0; y = 2 measurement gives z = 0

Show that this system Ax = b has no solution. Find the best least squares solution $\hat{z} =$

- b) A is an m×n matrix. Suppose Ax = b has at least one solution for every b.
 - i What is the rank of A?
 - ii. Describe all vectors in the nullspace of A7.
 - iii. Determine whether the equation $A^T y = c$ has (0 or 1), (1 or ∞), (0 or ∞), or (1) solution for every c.
- a) Suppose matrix A has eigenvalues λ₁ = 3, λ₂ = 1, λ₃ = 0 with corresponding eigenvectors: Ex1 Ex1

(CO2)

(PO1)

$$x_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 $x_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ $x_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ (PO1)

Find the matrix A.

b) Let V be a two-dimensional subspace in R³ consisting of vectors [x y z]^T satisfying: x + 2y - 5z = 0

Find a 3 × 2 matrix A whose columnspace is V.

Find an orthonormal basis for V.

5. a) Consider a sequence of numbers defined using the following terms:

$$G_0 = 0$$
 (000)

$$G_1 = 1/2$$
 (PO1)

$$\tilde{t}_{k+2} = (G_{k+1} + G_k)/2$$

- $G_{k+2} = (G_{k+1}+G_k)/2$ i. Set up a 2 × 2 matrix A to get from $\begin{bmatrix} G_{k+1} \\ G_k \end{bmatrix}$ to $\begin{bmatrix} G_{k+2} \\ G_{k+1} \end{bmatrix}$
- ii. Find an explicit formula for G.,
- iii. What is G_{1000} ? What is the limit of G_k as $k \to \infty$?
- b) Suppose a 3×3 matrix A has row₁ + row₂ = row₃. Explain why Ax = [1 0 0]^T can not have (CO1) a solution.

10

(PO1)

- a) Compute the Singular Value Decomposition $A = U\Sigma V^T$ for $A = \begin{bmatrix} 0 & 1 \\ -1 & 1 \\ -1 & 1 \\ -1 & -1 \end{bmatrix}$ 15
- b) The matrix A has a varying 1 x in the (1, 2) position:

	2	1 - x	0	0	
	1	1	1	1	
A=	1	1	2	4	L
	1	1	3	9	

Considering the properties of the determinant, show that det(A) is a linear function of x. For any x, compute det(A). For which value of x is the matrix singular?