ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT)

 ORGANISATION OF ISLAMIC COOPERATION (IC)
Math 4341: Linear Algebra

Programmable calculators are not allowed. Do not write anything on the question paper.
Answer all 6 (six) questions. Figures in the right margin indicate full marks of questions whereas corresponding CO and PO are written within parentheses.

1. a) Let $a, b \in \mathbb{R}$, and let

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & a \\
1 & 0 & -1 & 0 \\
0 & 1 & 2 & b
\end{array}\right]
$$

i. What are the dimensions of the four subspaces associated with the matrix A ? These values will depend on the values of a and b, and you should distinguish all cases.
ii. For $a=b=1$, give a basis for the columnspace of A. Is this also a basis for $\mathbb{R}^{3} ?$ Justify your answer.
b) Let $T: \mathbb{R}^{2} \rightarrow \mathbf{R}^{2}$ be the linear transformation satisfying:

$$
T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
-4 \\
3
\end{array}\right] \quad \text { and } \quad T\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
-10 \\
8
\end{array}\right]
$$

Find $T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)$.
2. a) If you convert matrix A (shown below) to row-reduced echelon form by the usual row elimination steps, you will achieve $R=\operatorname{rref}(A)$ as:

$$
A=\left[\begin{array}{llll}
1 & 2 & 1 & -7 \\
2 & 4 & 1 & -5 \\
1 & 2 & 2 & -16
\end{array}\right] \Rightarrow R=\left[\begin{array}{cccc}
1 & 2 & 0 & 2 \\
0 & 0 & 1 & -9 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

i. What are the minimum and the maximum number of columns of A that form a dependent and independent set of vectors, respectively?
ii. Give an orthonormal basis for the rowspace of A. Note that, it is not $C(A)$.
iii. Given the vector $b=\left(\begin{array}{lll}2 & 5 & -9\end{array}\right)^{T}$, compute a vector p that is closest to b in the rowspace $C\left(A^{T}\right)$.
iv. In terms of your calculated p in Question 2.a)iii., what is the closest vector to b in the nullspace $N(A)$?
b) What is the value of the following determinant for any values of a, b and c ?

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
b+c & c+a & a+b
\end{array}\right|
$$

3. a) Imagine a plane $z=C x+D y+E$ that is closest (in the least squares sense) to these four measurements:

$$
\begin{aligned}
& \text { At } x=1 ; y=0 \text { measurement gives } z=1 \\
& \text { At } x=1 ; y=2 \text { measurement gives } z=3 \\
& \text { At } x=0 ; y=1 \text { measurement gives } z=5 \\
& \text { At } x=0 ; y=2 \text { measurement gives } z=0
\end{aligned}
$$

Show that this system $A x=b$ has no solution. Find the best least squares solution $\hat{z}=$ ($\widehat{C}, \widehat{D}, \widehat{E})$.
b) A is an $m \times n$ matrix. Suppose $A x=b$ has at least one solution for every b.
i. What is the rank of A ?
ii. Describe all vectors in the nullspace of A^{T}.
iii. Determine whether the equation $A^{T} y=c$ has $(0$ or 1$),(1$ or $\infty),(0$ or $\infty)$, or (1) solution for every c.
4. a) Suppose matrix A has eigenvalues $\lambda_{1}=3, \lambda_{2}=1, \lambda_{3}=0$ with corresponding eigenvectors:

$$
x_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad x_{2}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \quad x_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Find the matrix A.
b) Let V be a two-dimensional subspace in \mathbb{R}^{3} consisting of vectors $\left[\begin{array}{ll}x & y \\ z\end{array}\right]^{T}$ satisfying:

$$
\begin{equation*}
x+2 y-5 z=0 \tag{CO1}
\end{equation*}
$$

i. Find a 3×2 matrix A whose columnspace is V.
ii. Find an orthonormal basis for V.
5. a) Consider a sequence of numbers defined using the following terms:

$$
\begin{align*}
G_{0} & =0 \tag{CO3}\\
G_{1} & =1 / 2 \tag{PO1}\\
G_{k+2} & =\left(G_{k+1}+G_{k}\right) / 2
\end{align*}
$$

i. Set up a 2×2 matrix A to get from $\left[\begin{array}{c}G_{k+1} \\ G_{k}\end{array}\right]$ to $\left[\begin{array}{c}G_{k+2} \\ G_{k+1}\end{array}\right]$.
ii. Find an explicit formula for G_{k}.
iii. What is G_{1000} ? What is the limit of G_{k} as $k \rightarrow \infty$?
b) Suppose a 3×3 matrix A has $r o w_{1}+$ row $_{2}=r o w_{3}$. Explain why $A x=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{T}$ can not have a solution.
6. a) Compute the Singular Value Decomposition $A=U \Sigma V^{T}$ for $A=\left[\begin{array}{cc}0 & 1 \\ -1 & 1 \\ 1 & 0\end{array}\right]$.
b) The matrix A has a varying $1-x$ in the $(1,2)$ position:

$$
A=\left[\begin{array}{cccc}
2 & 1-x & 0 & 0 \tag{CO1}\\
1 & 1 & 1 & 1 \\
1 & 1 & 2 & 4 \\
1 & 1 & 3 & 9
\end{array}\right]
$$

(PO1)

Considering the properties of the determinant, show that $\operatorname{det}(A)$ is a linear function of x. For any x, compute $\operatorname{det}(A)$. For which value of x is the matrix singular?

