23 December 2023 (Morning

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) Department of Computer Science and Engineering (CSE)

SEMESTER FINAL EXAMINATION DURATION: 3 HOURS WINTER SEMESTER, 2022-2023 FULL MARKS: 150

CSE 4361: Computer Science and Technology I

Programmable calculators are not allowed. Do not write anything on the question paper. Answer all <u>6</u>(six) questions. Figures in the right margin indicate full marks of questions whereas corresponding CO and PO are written within parentheses.

1.	a) Perform the following conversions: i. $(420)_{\mu} = (7)_{\mu_{0}}$ ii. $(678)_{\mu_{0}} = (7)_{\mu_{0}}$ iii. $(105)_{\mu_{0}} = (7)_{\mu_{0}}$ iii. $(105)_{\mu_{0}} = (7)_{\mu_{0}}$	4×2 (CO1) (PO1)
	 b) Explain the following terms: Kouter Switch Hub 	3 × 3 (CO1) (PO1)
	c) Imagine you are the owner of a financial consulting firm and your business relise on providing personalized financial planning software that utilizes the Fibonacci series. Write a C program to determine all the numbers of the Fibonacci series upto a number n, where n is input from the user and must be gratest than 0.	10 (CO2) (PO1)
2.	 a) Perform the following operations: i. (0011010)₁ + (001100)₂ ii. (0011010)₂ - (001100)₂ iii. (0011010)₂ × (001100)₂ 	3×3 (CO1) (PO1)
	b) There are many different CPU scheduling algorithms. There are five processes P ₁ , P ₂ , P ₃ , P ₄ and P ₃ having CPU time 6, 8, 7, 3 and 5. Show the CPU execution of these processes using 3 CPU scheduling algorithms. Also, calculate the waiting time for each process.	10 (CO1) (PO1)
	c) Describe briefly the LAN, MAN, and WAN transmission technologies.	6 (CO1) (PO1)
3.	a) Explain the importance of networking. What are the categories of Guided Media. Discuss the features of the categories with appropriate figure(s).	8 (CO1) (PO1)
	b) "The bandwidth or the throughput is affected by the distance between the connected com- puters" - explain the statement.	8 (CO1) (PO1)
	c) Define Instruction Cycle. List the steps of executing an instruction cycle.	8 (CO1) (PO1)

4.	 a) List the features of the following LAN topologies: i. Bus ii. Star iii. Ring 	9 (CO1) (PO1)
	 b) Define multiplexing. Briefly describe the function of each layer of the OSI mode 	l. 10 (CO1) (PO1)
	c) Define process. Show the states of a process using a figure.	6 (CO1) (PO1)
5.	a) Write the outputs of the following programs in Code Snippet 1 and 2.	12
	1 for i in range(1, 11): 2 print(f*i=(i)*)	(CO2) (PO3)
	Gode Redenant L. A. Back on December for Outstion 5 a)	

Code Snippet 1: A Python Program for Question 5.a).

1	p = 800		
	q = 0		
3	r = 500		
	if p >= 700:		
5	q = 600		
6	print(q, r)		

Code Snippet 2: A Python Program for Question 5.a).

b)	What is Memory Management in OS? There are different memory allocation schemes to al- locate memory to the processes that reside in memory at the same time. Explain the memory allocation schemes with appropriate figures.	13 (CO1) (PO1)
a)	Write the Boolean expression and truth table for the diagram in Figure 1 and 2.	12
	Input A Input B	(CO1) (PO1)

Figure 1: Logic Diagram for Question 6.a)

Figure 2: Logic Diagram for Question 6.a)

b) Define gate. Draw the logic diagrams of the following Boolean expressions:	12
i. $AB + BC(B + C)$	(CO1)
ii. $(AB) \oplus (AB) \oplus (AB)$	(PO1)
Here, the denotes the XOR operation and + denotes the OR operation.	