
'B.Sc. Engg. SWE 5th Semester 22 December 2023 (M9nq)

ISLAMIC UNIVERSITy OF TECHNOLOGY (IUT)(dO
ORGANISATION OF ISLAMIC COOPERATION (OIC)

Department of Computer Science and Engineering (CSE)
WINTER SEMESTER, 2022-2023

FULL MARKS: 150
SEMESTER FINAL EXAMINATION
DURATION: 3 HOURS

CSE 4501: Operating Systems
Programmable calculators are not allowed. Do not write anything on the question paper.
Answer all 6 (six) questions. Figures in the right margin indicate full marks of questions whereas

corresponding CO and PO are written within parentheses.

a) What defInes a process in an operating system, and how does it differ from a program? Pro-
vide a brief overview of various process states, and explain the transitions between these

states using diagrams and examples.

1.

b) in the context of Inter Process Communication (IPC) in a distributed computing environ-
ment, describe a scenario where:

i. Shared memory performs better than message passing

ii. Message passing performs better than shared memory
For each of the scenarios, explain how the choice of the IPC techniques depends on the
specifrc characteristics of the computational problem.

c) What resources are used when a thread is created? How do they differ from those used when
a process is created?

a) A supercomputer is designed to perform a simulation task that consists of three distinct
phases: preprocessing, computation, and postprocessing. The preprocessing phase is en-
tirely sequential, the computation phase can be parallelized to a certain extent, and the post-
processing phase is again entirely sequential. The total execution time of the simulation task
without any parallelization is 100 units of time. After careful analysis, it is determined that
20% of the entire task is preprocessing (sequential), 50% is computation (parallelizable), and

the remaining 30% is postprocessing (sequential).
i. Determine the speedup of the system when using 8 processors to parallelize the com-

putation phase .
ii. Discuss how the speedup and efficiency would change if the proportion of the compu-

tation phase that can be parallelized increases to 70%.
b) Consider a multimedia application that requires effIcient handling of both CPU-bound and

1/O-bound tasks. The application performs real-time processing of multimedia data, such
as decoding video frames and concurrently managing user inputs for interactive control. To
optimize task processing, the system needs to map user-level threads to kernel-level threads.

Which thread mapping model would you choose for this scenario? Provide justification,
including reasons for not selecting the other models.

c) Google’s Chrome browser opens each new tab in a separate process. Would the same ben-
ents have been achieved if Chrome opens each new tab in a separate thread? Explain your
answer.

2.

Write a thread program using the POSIX thread library. The program should include a 'con-
trol thread’ that issues START and STOP commands to a 'processing thread’. Upon receiv-
ing the START command, the 'processing thread’ should create and initiate a new 'worker
thread’. The 'worker thread’ is designed to print a single line 'The task has been started’ and
then wait in a loop. The 'processing thread’ should be able to stop a 'worker thread’ in the

waiting loop upon receiving the STOP signal.

a)3.

3 +7
(COI)
(POI)

5 x 2
(COI)
(POI)

2+ 3

(COI)
(POI)

5 + 5
(C02)
(P02)

10
(C02)
(P02)

5

(C02)
(POI)

10

(C02)
(P03)

CSE 4501 Page 1 of 4

i

b) Write the program described in Question 3.a) using the POSIX library, this time imple-
menting it with the concepts of processes and shared memory. (You are not allowed to use
threads)

c) Consider the POSIX C program in the Code Snippet 1. Write the program’s output. Your
answer should be in the exact order as displayed by the compiler.
Assume that the process executing the program has a process ID of X. This process creates
a child process with a process ID of X + 1, where X is the last four digits of your student ID.
For instance, if the student ID is 200042019, X will be 2019.

#include<sys/types . h>

#include<stdio . h>
#include<unistd . h>
#include<sys/wait . h>

1

2

3

4

5

6

7

8

9

10

11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27

int
{

}

Code Snippet 1: A C program that creates a child proccess using POSIX library for Question 3.c)

a) Annually, immigrants seek U.S. Citizenship through a naturalization process, overseen by a
judge and involving both immigrants and spectators. Immigrants need to wait in line, check
in, and then sit down. At some point, the judge enters the building. When the judge is in the

building, no one, including immigrants, can enter, and immigrants cannot leave. Spectators
are allowed to leave during this time. Once all immigrantg have checked in, the judge can
confIrm naturalization. After confirmation, immigrants can pick up their U.S. Citizenship
certificates, and the judge leaves. Spectators may then enter, and after immigrants receive
their certificates, they can leave.

Now considering each immigrants, spectators and the judge as separate thread design the
synchronization mechanisms to ensure proper coordination among them, adhering to the
specifled task order. To implement this scenario, you can use Mutex Locks, or Semaphores,
or both. Focus on writing synchronization aspects; providing a complete runnable code is
not required.

4.

(1C 1(bn) 2)

5
(C02)
(P02)

maIn ()

pid_t pid, pidl ;

/ + fork a child process
pid = fork () ;

if (pid < 0) { / t

fprintf(stderr ,

return 1 ;

t/

error occurred * /

"Fork Failed") ;

}

else if (pid > 0) { / t parent process

pidl = getpid () ;

wait (NULL) ;

printf ("pid = %d\n" , pid) ;
print f(11pidl = %d\n",pidl) ;

tI

else { / + child process + /
pidl = getpid () ;

printf ("pid = %d\n" , pId) ;
print f("pid1 = %d\n ",pidl) ;

}

}

return 0 ;

15

(C04)
(P03)

CSE 4501 Page 2 of 4

/ b) The Four Cars (Junctiori) Sync,hroni;ation Problem is a classic synchronization problem
used in computer science and operating systems to illustrate issues related to concurrent
processes. The scenario involves four cars arriving at a junction, each coming from a differ-
ent direction. The challenge is to synchronize the movement of the cars to avoid collisions.
One of your friends attempted the solution depicted in the Code Snippet 2, but it proved un-
successRrl in achieving synchronization. At times, it resulted in a deadlock scenario. Using
deadlock characterization, explain the reasons behind this deadlock occurrence. Propose
modifications to address the synchronization problem and enhance the effectiveness of the
solution.

10

(C04)
(P02)

1 1 Semaphore mutex = 1 ;

21 Semaphore carA = 0 ;

3 1 Semaphore carB = 0 ;

41 Semaphore carC = o;
51 Semaphore carD = 0 ;
6
71/ / Car A
8 1 wait (mutex) ;

9 1 signal (carA) ;

10 } wait (carB) ;

11 1 signal (mute><) ;

12 1// Critical Section for Car A
13 1 signal (carB) ;
14

15 S / / Car B

16 1 wait (mutex) ;

17 b sIgnal (carB) ;
18 1 wait (carC) ;

19 i signal (mutex) ;

20 1/ / Critical Section for Car B

21 1 signal (carC) ;

22
23 1// Car C

24 1 wait (mutex) ;

25 1 signal (carC) ;

26 1 wait (carD) ;
27 1 signal (mute><) ;

28 1// Critical Section for Car C
29 1 signal (carD) ;
30

31 // Car D
32 1 wait (mutex) ;

33 1 signal (carD) ;

34 1 wait (carA) ;

35 1 signal (mullex) ;

36 1// Critical Section for Car D

37 1 signal (carA) ;

//
//
//
//
//

Binary semaphore
Semaphore
Semaphore
Semaphore
Semaphore

for
for Car A
for Car B
for Car C
for Car D

mutual exclusion

Code Snippet 2: A solution to the Four Cars (Junction) Synchronization Problem for Question 4.b)

5. a) What are the advantages of having different time-quantum sizes at different levels of a mIl1- 5

tilevel queuing system? (COI)
(POI)

CSE 4501 Page 3 of 4

q,
\i

b) Consider the following set of processes in the Table 1. Th6 proce'sses are scheduled using
the Shortest Remaining Job First (SRJF) scheduling algorithm with exponential averaging

for predicting the next CPU burst.
Draw the Gantt chart. Calculate the average waiting time, response time, and turnaround
time for each process using the SRJF scheduling algorithm with exponential averaging.

4+6
(C03)
(P02)

Table 1: Process table for Question 5.b)

Process Arrival Time Previous Predicted
Burst Time (t„)

Previous Actual
Burst Time (f„)

a

0.6
0.4

0.5
0.3
0.5

Pl
P2
P3
P4
P5

0
1
2
3
4

6

5
3
2
4

7

4
5
4
2

c) As a system architect for a cloud-based service, you are tasked with designing a scheduling
mechanism to manage a diverse set of tasks. The system caters to both short-term interac-
tive tasks, long-running background tasks, and computational tasks with varying processing
needs. Additionally, there’s a need to prioritize tasks based on their historical behavior, en-
suring fair resource allocation.

i. Explain why you would choose the Multi-level Feedback Queue (MLFQ) scheduling
algorithm for this scenario.

ii. Discuss how MLFQ addresses the challenges posed by the diverse nature of tasks, vary-
ing processing times, and the need for adaptive prioritization based on task behavior.

iii. Justify how MLFQ aligns with the specific requirements of the cloud-based service.

3+
4+ 3
(C03)
(P02)

6. a) Consider the operational dynamics of a banking system, where two functions play vital role:
deposit (amount) and withdraw (amount) . These functions are passed the amount to
be deposited or withdrawn from a shared bank account, which is jointly held by a husband
and wife. In a concurrent scenario, the husband calls the withdraw () function while the
wife calls deposit () .
Describe how a race condition is possible in this scenario and suggest measures to prevent
the race condition from occurring.

b) Consider a real-time system with three tasks: Task X, Task Y, and Task Z, having the follow-
Ing propertIes.

• Task X (High Priority): Executes critical operations that require access to a shared re-
source. Runs periodically at a high frequency.

• Task Y (Medium Priority): Performs computations and may occasionally need access to
the same shared resource used by Task X. Has a lower priority than Task X.

• Task Z (Low Priority): Executes less critical operations and requires access to the shared
resource occasionally. Has the lowest priority among the three tasks.

Describe a scenario where priority inversion can occur in this system. Additionally, discuss
potential solutions or protocols that can be implemented to mitigate priority inversion in
this context.

4+6
(C04)
(P02)

4+6
(C04)
(P02)

c) What is the meaning of the term 'busy waiting’ in the context of process synchronization?
Explain whether busy waiting be avoided altogether.

1 +4
(COI)
(POI)

CSE 4501 Page 4 of 4

