B.Sc. Engg. CSE 5th Semester

9 December 2023 (Marris

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) Department of Computer Science and Engineering (CSE)

SEMESTER FINAL EXAMINATION DURATION: 3 HOURS WINTER SEMESTER, 2022-2023 FULL MARKS: 150

Math 4541: Multivariable Calculus and Complex Variable

Programmable calculators are not allowed. Do not write anything on the question paper. Answer all 6 (six) questions. Figures in the right margin indicate full marks of questions whereas corresponding CO and PO are written within parentheses.

1.	a) Find the domain and range of the function f(x, y) = 100 - x ² - y ² and plot the level curves	8
	f(x, y) = 0, $f(x, y) = 51$, and $f(x, y) = 75$ in the domain of f in the plane.	(CO1)
	10437	(RO1)

b) Show that

$$f(x, y) = \begin{cases} 2xy/(x^2 + y^2), & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$
(C01)
(P02)

is continuous at every point except the origin.

c) Consider the circuit diagram given in Figure 1. If resistors of R₃, R₃ and R₃ ohms are connected in parallel to make an R-ohm resistor, the value of R can be found from the Equation (COI)

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$
(1)

Find the value of $\delta R / \delta R_3$ when $R_1 = 30$, $R_2 = 45$, and $R_3 = 90$ ohms.

Figure 1: Circuit configuration for Question 1.c

2	a) Find the curvature and torsion for the helix	16
	$r(t) = (a \cos t)i + (a \sin t)j + btk$, where $a, b \ge 0$ and $a^2 + b^2 \ne 0$	(CO1) (RO1)

- b) An object of mass *m* travels along the parabola y = x² with a constant speed of 10 *units/sec.* (9) What is the force on the object due to its acceleration at (0, 0)? At (2¹, 2)? Write your answers (00) in terms of i and j.
- a) Find the angle between the velocity and acceleration vector of r(t) = (3t + 1)i + 23tj + t²k
 at time t = 0. Create a graph for the vector function given by r(t) = (cos t)i + (sin t)j + tk.

8 (CO1) (PO1)	Find the point on the curve $r(t) = (12 \sin t)i - (12 \cos t)j + 5tk$. at a distance 13p units along the curve from the point $(0, -12, 0)$ in the direction opposite to the direction of increasing arc length.	b)	
9 (CO2) (PO2)	Suppose we do not know the path of a hang glider, but only its acceleration vector $a(t) = -(3\cos t) - (3\sin t) + 2k$. We also know that initially (at time $t = 0$) the glider departed from the point $(4,0,0)$ with velocity $u(0) = 3$. Find the glider's position as a function of t.	c)	
8 (CO1) (PO1)	Find $\delta w/\delta r$ when $r=1,\ s=-1$ if $\ w=(x+y+z)^2$, $\ x=r-s,\ y=\cos{(r+s)},\ z=\sin{(r+s)}$	a)	4.
8 (CO1) (PO1)	Let $f(x,y)=(x-y)(x+y).$ Find the directions u and the values of $D_uf(1,-1)$ for which $D_uf(1,-1)$ is largest.	b)	
9 (CO1) (PO1)	Find the tangent plane and normal line of the level surface $f(x, y, z) = x^2 + y^2 + z - 9 = 0$ at the point (1, 2, 4).	c)	
16 (CO1) (PO1)	Find the absolute maximum and minimum values of $f(x, y) = 2 + 2x + 4y - x^2 - y^2$ on the triangular region in the first quadrant bounded by the lines $x = 0$, $y = 0$ and $y = 9 - x$.	a)	5.
9 (CO1) (PO1)	Find the dimensions of the closed right circular cylindrical can of smallest surface area whose volume is $16\pi\ cm^3$.	b)	
8 (CO1) (PO1)	Find the volume of the prism whose base is the triangle in the $xy - plane$ bounded by the $x-axis$ and the lines $y = x$ and $x = 1$ and whose top lies in the plane $z = f(x, y) = 3-x-y$.	a)	6.
8 (CO1) (PO1)	Using double integral find the area of the region R enclosed by the parabola $y=x^3$ and the liney = $x+2$.	b)	
9 (CO2) (PO1)	Find the volume of the wedge like solid that lies beneath the surface $z = 16 - x^2 - y^2$ and above the region <i>R</i> bounded by the curve $y = 2\sqrt{x}$, the line $y = 4x - 2$, and the $x - axis$.	c)	