ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT)
 ORGANISATION OF ISLAMIC COOPERATION (OIC) Department of Computer Science and Engineering (CSE)

SEMESTER FINAL EXAMINATION

WINTER SEMESTER, 2022-2023 DURATION: 3 HOURS

Math 4541: Multivariable Calculus and Complex Variable

Programmable calculators are not allowed. Do not write anything on the question paper. Answer all 6 (six) questions. Figures in the right margin indicate full marks of questions whereas corresponding CO and PO are written within parentheses.

1. a) Find the domain and range of the function $f(x, y)=100-x^{2}-y^{2}$ and plot the level curves $f(x, y)=0, f(x, y)=51$, and $f(x, y)=75$ in the domain of f in the plane.
b) Show that

$$
f(x, y)= \begin{cases}2 x y /\left(x^{2}+y^{2}\right), & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

is continuous at every point except the origin.
c) Consider the circuit diagram given in Figure 1. If resistors of R_{1}, R_{2} and R_{3} ohms are con-

$$
\begin{equation*}
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}} \tag{1}
\end{equation*}
$$

Find the value of $\delta R / \delta R_{2}$ when $R_{1}=30, R_{2}=45$, and $R_{3}=90 \mathrm{ohms}$.

Figure 1: Circuit configuraiton for Question $1 . c$
2. a) Find the curvature and torsion for the helix

$$
\begin{equation*}
r(t)=(a \cos t) i+(a \sin t) j+b t k, \text { where } a, b \geq 0 \text { and } a^{2}+b^{2} \neq 0 \tag{CO1}
\end{equation*}
$$

b) An object of mass m travels along the parabola $y=x^{2}$ with a constant speed of 10 units $/ \mathrm{sec}$. in terms of i and j.
3. a) Find the angle between the velocity and acceleration vector of $r(t)=(3 t+1) i+23 t j+t^{2} k$ at time $t=0$. Create a graph for the vector function given by $r(t)=(\cos t) i+(\sin t) j+t k$.
b) Find the point on the curve $r(t)=(12 \sin t) i-(12 \cos t) j+5 t k$. at a distance 13 p units along the curve from the point $(0,-12,0)$ in the direction opposite to the direction of increasing arc length.
c) Suppose we do not know the path of a hang glider, but only its acceleration vector $a(t)=$ $-(3 \cos t) t-(3 \sin t) j+2 k$. We also know that initially (at time $t=0$) the glider departed from the point $(4,0,0)$ with velocity $v(0)=3 \mathrm{j}$. Find the glider's position as a function of t.
4. a) Find $\delta w / \delta r$ when $r=1, s=-1$ if $w=(x+y+z)^{2}, x=r-s, y=\cos (r+s)$, $z=\sin (r+s)$
b) Let $f(x, y)=(x-y)(x+y)$. Find the directions u and the values of $D_{u} f(1,-1)$ for which $D_{u} f(1,-1)$ is largest.
c) Find the tangent plane and normal line of the level surface $f(x, y, z)=x^{2}+y^{2}+z-9=0$ at the point $(1,2,4)$.
5. a) Find the absolute maximum and minimum values of $f(x, y)=2+2 x+4 y-x^{2}-y^{2}$ on the triangular region in the first quadrant bounded by the lines $x=0, y=0$ and $y=9-x$.
b) Find the dimensions of the closed right circular cylindrical can of smallest surface area whose volume is $16 \pi \mathrm{~cm}^{1}$.
6. a) Find the volume of the prism whose base is the triangle in the $x y$-plane bounded by the $x-\alpha x i$ s and the lines $y=x$ and $x=1$ and whose top lies in the plane $z=f(x, y)=3-x-y$.
b) Using double integral find the area of the region R enclosed by the parabola $y=x^{2}$ and the liney $=x+2$.
c) Find the volume of the wedge like solid that lies beneath the surface $z=16-x^{2}-y^{2}$ and above the region R bounded by the curve $y=2 \sqrt{x}$, the line $y=4 x-2$, and the $x-a x i s$.

