ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (IC) Department of Computer Science and Engineering (CSE)

SEMESTER FINAL EXAMINATION DURATION: 3 HOURS

WINTER SEMESTER, 2022-2023
FULL MARKS: 150

CSE 4703: Theory of Computing

Programmable calculators are not allowed. Do not write anything on the question paper. Answer all 6 (six) questions. Figures in the right margin indicate full marks of questions whereas corresponding CO and PO are written within parentheses.

1. a) Explain if each of the following assertion is correct or incorrect.
i. Membership problem in context-free language is decidable,
ii. M_{1} is a deterministic finite automaton (DFA) while M_{2} is a non-deterministic finite automato (NFA). The problem of determining the equivalence of language generated by M_{1} and M_{2} ie. $L_{1}\left(M_{1}\right)=L_{2}\left(M_{2}\right)$ is an undecidable problem.
iii. If $L_{1}=\left\{a^{n} b^{n} c^{m} \mid m, n \geqq 0\right\}$ and $L_{2}=\left\{a^{m} b^{n} c^{n} \mid m, n \geqq 0\right\}$ are two language, then $L_{1} \cup L_{2}$ is context-free language.
iv. The set of all irrational numbers in the interval $(0,1)$ is infinitely countable.
v. A Turing machine (TM) can compute anything a desktop PC can, although it might take more time
b) Programming languages allow comments to appear between delimiters such as / \# and \#/For simplicity, assume the alphabet, $\Sigma=\left\{a, b_{*} /, \#\right\}$.
2. a) Determine the regular expression for the language L given as follows.

$$
L=\left\{a^{n} b^{m} \mid m+n=\text { even and } m, n \geq 0\right\} \text {, where } \sum=\{a, b\}
$$

b) Let G be a context-free grammar given below.

$$
\begin{aligned}
& S \rightarrow A B|S S| a \\
& A \rightarrow B S|C D| b \\
& B \rightarrow D D \mid b \\
& C \rightarrow D E|a| b \\
& D \rightarrow a \\
& E \rightarrow S S
\end{aligned}
$$

Determine whether the string 'abaab' is the member of the $L(G)$ using the CYK algorithm (in your answer you need to the show table).
3. a) Design a context-free grammar for the language L given as follows on alphabet, $\Sigma=\{a, b\}$.

$$
L=\left\{a^{n} b^{n} \mid m \geq n\right\} \cup\left\{a^{n} b^{2 n+1} \mid n \geq 1\right\}
$$

b) Design state diagram of pushdown automat (PDA) for the language L defined as follows.

$$
L=\left\{a^{n} b^{m+n} c^{n} \mid m, n \geqq 1\right\} \text {, where } \Sigma=\{a, b, c\}
$$

c) When simulating an NFA on a Turing machine (TM) to determine whether a string w is accepted or rejected by the NFA, you may encounter certain challenges. What are these challenges, and how can you solve them?

10
4. a) Alan Turing's Turing machine (TM) is a robust theoretical model for solving problems. A general-purpose computer is more accurately represented by a TM, which is like a finite automaton but has infinite memory. However. Turing machines cannot solve all problems. Answer the following question about TM.
i. Give a formal definition of TM.
ii. Give the precise mathematical expression of the transition function of a variety of TM types, such as deterministic TM, non-deterministic TM, and multi-tape TM.
iii. The original Alan's TM model and its all variants have the same power-justify this statement.
b) Design a Turing machine (TM) that takes as input two messages, m_{1} and m_{2}, of equal length and compares whether the m_{1} and m_{2} messages are identical. The tape initially contains $m_{1} \# m_{2}$, where '\#' is a tape symbol that is used as the separator. Assume the message contains the alphabet, $\Sigma=\{a, b\}$.
5. a) Mr. Robel has been assigned to develop a Turing machine (TM) that takes a DFA as an input and verifies whether the DFA accepts no strings, indicating that it recognizes an empty language.
i. Is the construction of such a TM machine possible?
ii. Prove that emptiness testing for regular language that is recognized by DFA is a decidable problem.
b) Consider the language $A_{\varepsilon-C F C}$ is defined as follows.

$$
A_{t-C F G}=\{<G>\mid G \text { is a context }- \text { free grammar }(C F G) \text { that generates string } \varepsilon\} \text {. }
$$

Show that language $A_{\text {e-CFO }}$ is decidable.
6. a) Consider the language $A_{T M}$ is defined as follows.

$$
\begin{equation*}
A_{T M}=\{\langle M, w\rangle \mid M \text { is a Turing machine }(T M) \text { and } M \text { accepts } w\} \tag{PO2}
\end{equation*}
$$

Show that language $A_{T M}$ is undecidable.
b) It is proven that a language is Turing-recognizable if and only if some enumerator (E) enumerates it. To prove this claim, we run Turing machine M for i steps on each input string, $s_{1}, s_{2}, \ldots, s_{1}$ and print out the string s_{j}, if M accepts it. Why do we not use the following simpler algorithm for the forward direction of the proof? As before, s_{1}, s_{2}, \ldots is a list of all strings in Σ^{*}.

$$
\begin{aligned}
& E=\text { "Ignore the input, } \\
& \text { 1. Repeat the following for } i=1,2,3, \ldots . . \\
& \text { 2. Run } M \text { on } s_{i} \text {. } \\
& \text { 3. If it accepts, print out } s_{i} \text { ". }
\end{aligned}
$$

c) You are given two classes of problems, labeled as X and Y, together with a Turing machine

