ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT)
 ORGANISATION OF ISLAMIC COOPERATION (OIC) DEPARTMENT OF MECHANICAL AND PRODUCTION ENGINEERING

Semester Final Examination

Course Number: ME 4151
Winter Semester: 2022-2023

Course Title: Statics \& Dynamics
Full Marks: 150
Time: 3 Hours

There are Six questions. Answer all the questions. The symbols have their usual meanings. Marks of each question and the corresponding CO and PO are written on the right side. Assume a reasonable value of missing data.

1. a. Define moment. Determine the resultant moment of the four forces acting on the rod shown in Fig A.

(A)
b. The boom is used to support the $75-\mathrm{lb}$ flowerpot in Fig B. Determine the tension developed in wires AB and AC .

(B)

2 a. Write the equation of motions for a projectile with an initial velocity of U at an angle θ to the horizontal plane. Define the position of the particle as a function of time and include an equation for both horizontal and vertical motion.
b. Neglecting the size of the ball, determine the magnitude v_{A} of the basketball's initial velocity and its velocity, and direction when it passes through the basket as shown in Fig B.

(B)
c. The particle in Fig C travels at a constant speed of $300 \mathrm{~mm} / \mathrm{s}$ along the

10
curve. Determine the particle's acceleration when it is located at point (200 CO3 $\mathrm{mm}, 100 \mathrm{~mm}$) and sketch this vector on the curve.

(C)
3. a. The tractor shown in Fig A is used to lift the $150-\mathrm{kg}$ load B with the 24m -long rope, boom, and pulley system. If the tractor travels to the right with an acceleration of $3 \mathrm{~m} / \mathrm{s}^{2}$ and has a velocity of $4 \mathrm{~m} / \mathrm{s}$ at the instant

(A)
b. The $8-\mathrm{kg}$ sack in Fig B slides down the smooth ramp. If it has a speed of
$1.5 \mathrm{~m} / \mathrm{s}$ when $y=0.2 \mathrm{~m}$, determine the normal reaction the ramp exerts on the sack and the rate of increase in the speed of the sack at this instant.

(B)

4 a. If the $60-\mathrm{kg}$ skier passes point A with a speed of $5 \mathrm{~m} / \mathrm{s}$, determine his speed

(A)
b The 2-lb collar shown in Fig B has a speed of $5 \mathrm{ft} / \mathrm{s}$ at A . The attached spring has an unstretched length of 2 ft and a stiffness of $\mathrm{k}=10 \mathrm{lb} / \mathrm{ft}$. If the collar moves over the smooth rod, determine its speed when it reaches point B , the normal force of the rod on the collar, and the rate of decrease in its speed.

(B)

5 a Define the coefficient of restitution and explain elastic and plastic impacts.
b The $50-\mathrm{kg}$ boy in Fig A jumps on the $5-\mathrm{kg}$ skateboard with a horizontal velocity of $5 \mathrm{~m} / \mathrm{s}$. Determine the distance s the boy reaches up the inclined plane before momentarily coming to rest. Neglect the skateboard's rolling

(B)
c. The two disks A and B have a mass of 3 kg and 5 kg , respectively. If they collide with the initial velocities shown, determine their velocities just after impact as shown in Fig C. The coefficient of restitution is $\mathrm{e}=0.65$.

(C)

6 a $\operatorname{Rod} \mathrm{AB}$ in Fig A is rotating with an angular velocity of $\omega_{A B}=60 \mathrm{rad} / \mathrm{s}$. Also, sketch the position of bar BC when $\theta=30^{\circ}, 60^{\circ}$ and 90° to show its general plane motion.

(A)
b If bar AB in Fig B has an angular velocity $\omega_{A B}=6 \mathrm{rad} / \mathrm{s}$, determine the velocity of the slider block C at the instant shown. Draw the position of IC showing all the angles and distance.

