ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT)

 ORGANISATION OF ISLAMIC COOPERATION (OIC)
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

Semester Final Examination
Course No.: Math 4121
Course Title: Mathematics I

Winter Semester, A. Y. 2022-2023
Time: 3 Hours
Full Marks: 150

There are 6 (six) questions. Answer all 6 (six) questions. The symbols have their usual meanings. Programmable calculators are not allowed. Marks of each question and corresponding CO 5 and $\mathrm{PO} s$ are written in the brackets

1. a) Explain first derivative test, second derivative test and higher derivative test for the point of inflection of a function. Determine the point of inflection of the function $y=(5 x-4)^{3}$ using first derivative.
b) Mention the different indeterminate forms. Explain the way of evaluating these forms. State and prove L'Hospitals theorem.
2. a) If $u=F\left(x^{2}+y^{2}+z^{2}\right) f(x y+y z+z x)$ then find the value of
$(y-z) \frac{\partial u}{\partial x}+(z-x) \frac{\partial u}{\partial y}+(x-y) \frac{\partial u}{\partial z}$
b) Find the radius of curvature of the curve
$y=\frac{1}{2} a \cdot\left(e^{\frac{2}{x}}+e^{-\frac{t}{4}}\right)$ at the point $(0$, a $)$
3. a) Solve the following:
i) $\int \frac{x+1}{\sqrt{4+8 x-5 x^{2}}} d x$
ii) $\int \frac{x^{\frac{1}{1}}}{1+x^{\frac{3}{4}}} d x$
b) Find the reduction formula for
$I_{n}=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x d x$ hence find Wallis's formula for $\int_{0}^{\frac{1}{2}} \cos ^{n} x d x$
4. a) Evaluate the following definite integrals
i) $\int_{0}^{\frac{\pi}{4}} \ln \sqrt[3]{\cos x} d x \quad$ ii) $\int_{0}^{4} x^{8} \sqrt{a^{2}-x^{2}} d x$
b) Show that $\mathrm{B}(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$ hence find the value of $\mathrm{B}\left(2, \frac{1}{2}\right)$.
5. a) Evaluate $\int_{1}^{3} \frac{e^{\sqrt{2 x-1}}}{\sqrt{x}+2} d x$ by Simpson's rule taking 10 subintervals.
b) Find the length of the loop of the curve $3 a y^{2}=x(x-a)^{2}$.
6. a) Find the area included between the curve $y^{2}(a-x)=x^{3}$ and its asymptote.
b) The arc of the asteroid $x=a \cos ^{3} \theta, \quad y=a \sin ^{3} \theta$ from $\theta=0$ to
$\theta=\frac{\pi}{4}$ revolves about x-axis. Find the surface area of the solid generated.
