B. Sc. in EEE, $3^{\text {rd }}$ Semester

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

Semester Final Examination
Course No.: EEE 4303
Course Title: Electronics II

Winter Semester, A.Y. 2022-2023
Time: 180 Minutes
Full Marks: 150

There are 6 (six) questions. Answer all 6 (six) questions. The symbols have their usual meanings. Programmable calculators are not allowed. Marks of each question and corresponding COs and POs are written in the brackets. Do not write on this question paper.

1. a) Formulate the expression of output voltage for a non-inverting summing amplifier in case of three input voltages.
(PO1)
b) Determine the equation of the closed-loop voltage gain, A_{v} of the T-feedback inverting amplifier shown in Fig. 1(b).

(PO2)

Fig. 1(b)
2. a) Sketch the Bode plots (magnitude \& phase) for the transfer function, $H(\omega)=\frac{5(j \omega+2)}{j \omega(j \omega+10)}$.
b) Explain the Bode plot in Fig. 2(b) and find the transfer function $H(\omega)$.

Fig. 2(b)
3. a) Sketch the circuit diagram of a unity gain amplifier and a precision halfwave rectifier circuit with its voltage transfer characteristics using op-amp.
b) Design a two-pole high-pass Butterworth active filter with a cutoff frequency
at foab $=25 \mathrm{kHz}$ and a unity gain magnitude at high frequency. Also determine
4. a) The open-loop voltage gain of an amplifier is given by $A_{v}=\frac{10^{5}}{\left(1+j \frac{1}{10^{5}}\right)\left(1+j \frac{1}{20^{5}}\right)^{3}}$, if the low-frequency closed-loop gain is 100 , is this amplifier stable? If so, determine the phase margin.
b) A feedback amplifier has a low-frequency open-loop gain of 4000 and three poles at $f_{P 5}=400 \mathrm{kHz}, f_{P 2}=4 \mathrm{MHz}$, and $f_{P 3}=40 \mathrm{MHz}$. A dominant pole is to be inserted such that the phase margin is 50 degrees. Assuming the original poles remain fixed, determine the dominant pole frequency.
5. a) Explain the frequency of oscillation and the condition of oscillation of a Phase-Shift oscillator.
b) Formulate the loop gain functions $T(s)$, the frequency of oscillation, and the R_{2} / R_{1} required for oscillation for the circuit in Fig. 5(b).

(PO2)

Fig. 5(b)
6. a) Explain the crossover distortion in class-B operation of an amplifier.
b) Analyse the operation of a class-AB complementary BIT push-pull output stage.

