ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT)
 ORGANISATION OF ISLAMIC COOPERATION (OIC)
 DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

Semester Final Examination
Course No.: EEE 4501
Course Title: Electromagnetic Fields and Waves

Winter Semester, A.Y. 2022-2023
Full Marks: 150
Time: 3 Hours

There are 05 (five) questions. Answer all 05 (five) questions. Marks for parts of the questions and corresponding CO and PO are indicated in the right margin. Programmable calculators are not allowed. Do not write on this question paper. Symbols carry their usual meanings.

1. a) i) Three point charges are located in the $z=0$ plane: a charge $+Q$ at point $(-1,0)$, a charge $+Q$ at point $(1,0)$, and a charge $-2 Q$ at point $(0,1)$. Determine the electric flux density at $(0,0)$.
ii) A dielectric sphere $\varepsilon_{1}=2 \varepsilon_{0}$ is buried in a medium with $\varepsilon_{2}=6 \varepsilon_{0}$. Given that $\mathbf{E}_{2}=10 \sin \theta \mathbf{a}_{\mathrm{r}}+5 \cos \theta$ ae in the medium, calculate \mathbf{E}_{1} and \mathbf{D}_{1} in the dielectric sphere.
b) Infinite line $x=3, z=4$ carries $16 \mathrm{nC} / \mathrm{m}$ and is located in free space above the conducting plane $z=0$.
(i) Find \mathbf{E} at $(2,-2,3)$.
(ii) Calculate the induced surface charge density on the conducting plane at $(5,-6,0)$.
2. a) A hollow conducting cylinder has inner radius a and outer radius b and carries current I along the positive z-direction. Find \mathbf{H} everywhere.
b) A -2 mC charge starts at point $(0,1,2)$ with a velocity of $5 \mathrm{a}_{x} \mathrm{~m} / \mathrm{s}$ in a magnetic field
$6+6+3$ $\mathbf{B}=6 \mathbf{a}_{y} \mathrm{~Wb} / \mathrm{m}^{2}$. Determine the position and velocity of the particle after 10 s , assuming that the mass of the charge is 1 gram. Describe the motion of the charge.
3. a) i) The plane $z=0$ separates air $\left(z \geq 0, \mu=\mu_{0}\right)$ from iron ($\mathrm{z} \leq 0, \mu=200 \mu_{0}$). Given that $\mathbf{H}=10 \mathbf{a}_{x}+15 \mathbf{a}_{y}-3 \mathbf{a}_{z} \mathrm{~A} / \mathrm{m}$
in air, find \mathbf{B} in iron and the angle it makes with the interface.
ii) The magnetic field in a material space $\left(\mu=15 \mu_{0}\right)$ is given by
$B=4 \mathbf{a}_{x}+12 \mathbf{a}_{y} \mathrm{mWb} / \mathrm{m}^{2}$.
Calculate the energy stored in region $0<x<2,0<y<3,0<z<4$.
b) Explain why and how Maxwell's fourth equation for static field $(\nabla \times \mathbf{H}=\mathbf{J})$ is to be modified for time varying field. From that discussion define displacement current density.
4. a) i) A conductor located at $0<y<1.6 \mathrm{~m}$ moves with velocity $2 \mathrm{a}_{x} \mathrm{~m} / \mathrm{s}$ in a magnetic field, $\mathbf{B}=10 \cos \beta y \mathbf{a}_{z} \mathrm{~Wb} / \mathrm{m}^{2}$ where β is a constant. Determine the induced voltage.
ii) An ac voltage source is connected across the plates of a parallel-plate capacitor so that $\mathbf{E}=25 \sin \left(10^{3} t\right) \mathbf{a}_{z} \mathrm{~V} / \mathrm{m}$. Calculate the total current crossing a $2 \mathrm{~m} \times 5 \mathrm{~m}$ area placed perpendicular to the electric field. Assume that the capacitor is air filled.
b) An antenna radiates in free space and

$$
\mathbf{H}(r, \theta, \phi, t)=\frac{12 \sin \theta}{r} \cos \left(2 \pi \times 10^{8} t-\beta r\right) \mathbf{a}_{\theta} \mathrm{mA} / \mathrm{m} \text {. }
$$

Find the corresponding \mathbf{E} (in time domain) in terms of β using phasor algebra.
5. a) i) The magnetic field intensity of a uniform plane wave in a good conductor ($\varepsilon=\varepsilon_{0}$, $\mu=\mu_{0}$) is given by

$$
\mathbf{H}=20 e^{-12 z} \cos \left(2 \pi \times 10^{6} t+12 z\right) \text { ayy } \mathrm{mA} / \mathrm{m} .
$$ Find the conductivity, intrinsic impedance and the corresponding \mathbf{E} field.

ii) In free space, $\mathbf{E}=40 \cos (\omega t-10 z) a_{y} \mathrm{~V} / \mathrm{m}$. Find the total average power passing through a circular disk of radius 1.5 m in the $z=0$ plane.

5 diagram.

Rectangular to Cylindrical

Variable $\left\{\begin{array}{l}x=p \cos \phi \\ \text { change } \\ y=p \sin \phi \\ x=x\end{array}\right.$
Component $\left\{\begin{array}{l}A_{y}=A_{x} \cos \phi+A_{y} \sin \phi \\ A_{4}=-A_{2} \sin \phi+A_{y} \cos \phi \\ A_{4}=A_{4}\end{array}\right.$

CyEndrical to Rectangular

Variable $\begin{aligned} & \text { change }\left\{\begin{array}{l}\rho=\sqrt{x^{2}+y^{2}} \\ \phi=\tan ^{-1}\left(\frac{y}{x}\right) \\ z=r\end{array}\left\{\begin{array}{l}\sin \phi=\frac{y}{\sqrt{x^{2}+y^{2}}} \\ \cos \phi=\frac{x}{\sqrt{x^{2}+y^{3}}}\end{array}\right.\right. \\ & \begin{array}{l}\text { Component } \\ \text { change }\end{array}\left\{\begin{array}{l}A_{2}=A_{2} \frac{x}{\sqrt{x^{2}+y^{2}}}=A_{4} \frac{y}{\sqrt{x^{3}+y^{3}}} \\ A_{2}=A_{0} \frac{y}{x^{2}+y^{2}}\end{array}+A_{4} \frac{x}{\sqrt{x^{3}+y^{2}}}\right.\end{aligned}$

Spherical to Rectangular

Variable
change $\left\{\begin{array}{l}r-\sqrt{x^{2}+y^{3}+z^{2}} \\ \theta=\cos ^{-1} \frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}\left\{\begin{array}{l}\cos \theta=\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} \\ \sin \theta=\frac{\sqrt{x^{2}+y^{2}}}{\sqrt{x^{3}+y^{2}+z^{3}}} \\ \phi=\tan ^{-1}\left(\frac{y}{x}\right)\end{array}\left\{\begin{array}{l}\cos \phi=\frac{x}{\sqrt{x^{2}+y^{2}}} \\ \sin \phi=\frac{y}{\sqrt{x^{2}+y^{2}}}\end{array}\right.\right.\end{array}\right.$

Cartesian Coordinates (x, y, z)
$A \quad=A_{s} a_{z}+A_{y} a_{y}+A_{s} a_{3}$
$\nabla V=\frac{\partial V}{\partial x} a_{z}+\frac{\partial V}{\partial y} a_{z}+\frac{\partial V}{\partial z} a_{z}$
$\nabla \cdot \mathbf{A}=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{z}}{\partial y}+\frac{\partial A_{z}}{\partial z}$
$\nabla \times \mathbf{A}=\left|\begin{array}{ccc}\mathbf{a}_{x} & \mathbf{a}_{y} & \mathbf{a}_{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_{x} & A_{y} & A_{z}\end{array}\right|$

$$
=\left[\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right] a_{x}+\left[\frac{\partial A_{z}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right] a_{y}+\left[\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{z}}{\partial y}\right] a_{n}
$$

$\nabla^{2} V=\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}+\frac{\partial^{2} V}{\partial z^{2}}$

Cylindrieal Coordinates (ρ, ϕ, z)

$A \quad=A_{j} \bar{a}_{p}+A_{\phi} a_{\phi}+A_{z} a_{z}$
$\nabla V=\frac{\partial V}{\partial \rho} \mathbf{a}_{j}+\frac{1}{\rho} \frac{\partial V}{\partial \phi} \mathbf{a}_{\psi}+\frac{\partial V}{\partial z} \mathbf{a}_{\varepsilon}$
$\nabla \cdot A=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho A_{\rho}\right)+\frac{1}{\rho} \frac{\partial A_{\psi}}{\partial \phi}+\frac{\partial A_{z}}{\partial z}$
$\nabla \times \mathbf{A}=\frac{1}{\rho}\left|\begin{array}{ccc}\mathbf{a}_{p} & \rho \mathbf{a}_{p} & \mathbf{a}_{z} \\ \frac{\partial}{\partial \rho} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z} \\ A_{p} & \rho A_{p} & A_{z}\end{array}\right|$

$$
=\left[\frac{1}{\rho} \frac{\partial A_{i}}{\partial \phi}-\frac{\partial A_{\phi}}{\partial z}\right] \mathbf{a}_{F}+\left[\frac{\partial A_{\rho}}{\partial z}-\frac{\partial A_{t}}{\partial \rho}\right] \mathbf{a}_{\phi}+\frac{1}{\rho}\left[\frac{\partial}{\partial \rho}\left(\rho A_{\phi}\right)-\frac{\partial A_{p}}{\partial \phi}\right] \mathbf{a}_{z}
$$

$\nabla^{2} V=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial V}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} V}{\partial \phi^{2}}+\frac{\partial^{2} V}{\partial z^{2}}$

Spherical Coordinates (r, θ, ϕ)

$$
\begin{aligned}
& \mathrm{A}=A_{i} \mathrm{a}_{y}+A_{p} \mathrm{a}_{g}+A_{\phi} \mathrm{a}_{e} \\
& \nabla V=\frac{\partial V}{\partial r} a_{r}+\frac{1}{r} \frac{\partial V}{\partial \theta} a_{\theta}+\frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi} a_{t} \\
& \nabla \cdot \mathbf{A}=\frac{1}{r^{3}} \frac{\partial}{\partial r}\left(r^{2} A_{+}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(A_{\theta} \sin \theta\right)+\frac{1}{r \sin \theta} \frac{\partial A_{\phi}}{\partial \phi} \\
& \nabla \times \mathrm{A}=\frac{1}{r^{2} \sin \theta}\left|\begin{array}{ccc}
a_{r} & r a_{g} & (r \sin \theta) a_{\phi} \\
\frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\
A_{r} & r A_{\phi} & (r \sin \theta) A_{\psi}
\end{array}\right| \\
& =\frac{1}{r \sin \theta}\left[\frac{\partial}{\partial \theta}\left(A_{4} \sin \theta\right)-\frac{\partial A_{t}}{\partial \phi}\right] a_{r}+\frac{1}{r}\left[\frac{1}{\sin \theta} \frac{\partial A_{2}}{\partial \phi}-\frac{\partial}{\partial r}\left(r A_{4}\right)\right] a_{\varphi} \\
& +\frac{1}{r}\left[\frac{\partial}{\partial r}\left(r A_{p}\right)-\frac{\partial A_{r}}{\partial \theta}\right] a_{s} \\
& \nabla^{2} V=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial V}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial V}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} V}{\partial \phi^{2}}
\end{aligned}
$$

