B.Sc. in EEE, 5th Semester

December 9, 2023 Aforein

ISLAMIC UNIVERSITY OF TECHNOLOGY (JUT). ORGANISATION OF ISLAMIC COOPERATION (OIC) DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

Semester Final Examination Course No.: EEE 4535 Course Title: Renewable Energy System Winter Semester, A. Y. 2022-2023 Time: 3 hours Full Marks: 150

There are 6 (Six) questions. Answer all 6 (Six) questions. The symbols have their usual meanings. Programmable calculators are not allowed. Marks of each question and corresponding COs and POs are written in the brackets.

1	a)	Explain the operation with Advantages and Disadvantages of HAWT and VAWT.	9 (CO1, PO1)
	b)	A 40-m, three-bladed wind turbine produces 600 kW at a wind speed of 14 m/s. Air density is the standard 1.225 kg/m ² . Under these conditions, I. Explain the concept of Tip Speed Ratio (TSR) and its influence on the rotor's	16 (CO2, PO2)
		revolutions per minute (rpm) in the context of the given wind turbine. II. Calculate the rpm of the rotor when operating with a TSR of 4.0 and determine the tip speed of the rotor under the specified conditions. II. Evaluate the gear radio reaured to synchronize the rotor speed with the	
		generator speed of 1800 rpm. IV. Assess the efficiency of the complete wind turbine, considering the	
		integrated performance of its components (blades, gearbox, generator) under the specified operational conditions.	
2	a)	Deduce the simple equivalent circuit of a solar PV cell. Then, modify this simple circuit to assemble a more accurate representation, highlighting the reasons for these modifications, Analyze how the accurate equivalent circuit influences the PV cell's cirrent-voltage (1-V) characteristics and efficiency under varying conditions. Lastly.	12 (CO1, PO1)
		briefly discuss the practical significance of using this refined model in PV system design and optimization.	
	b)	Å P Londels comprises 15 (dottical cells, 12 connected reserve, the three parallel iners, With 1-sum insolution (1 WWith), each cell has short-circuit current lsc = 5.4 A, and at 25°C its reverse suturation current is $l_{\rm p}=6\times10^{-23}$ A, Parallel resistance, 87 \approx 0.005 L), first the voltage, current, and power delivered when the junction voltage of each cell is 0.50 V. Draw the 1-V characteristics of the module.	13 (CO2, PO2)
3	a)	Briefly Explain the impact of tower height and number of blades in a wind turbine.	10 (CO1, PO1)
	b)	Find the density of air at 1 latm and 30° C (86° F). An anenometer mounted 10 m above a surface with crops, hedges, and shrubs shows a windspeed of 5 m/s. Estimate the wind speed and the specific power in the wind at a height of 50 m. Assume 15° C and 1 atm of pressure.	15 (CO2, PO2)

4	a)	Deduce the input and output power of a wind turbine.	10 (CO1, PO1)
	b)	Describe different grid connections of wind power. Explain DC-AC-DC link with proper illustration.	15 (CO2, PO2)
5	a)	Explain the operational principles governing the connection of a PV system to the grid without a battery, detailing the flow of electricity and the specific functions of each component.	12 (CO1, PO1)
	b)	A household consumes 200 units of energy on an average in a month in Dhaka. Design a rooftop PV setup for net zero Energy. In Dhaka the $H_{\rm avera}=4.58$ kwh/m²/day.	13 (CO2, PO2)
6	a)	Explain the operational principles of connecting a PV system with a battery to the grid, highlighting the interactions between the PV system, battery, and the grid. Deduce the efficiency of such a system.	12 (CQ1, PO1)
	b)	Identify the types of batteries suitable for photovoltaic (PV) systems and recall the key reasons that make them suitable. Propose multiple ways of denoting battery capacity. Examine the concept of C -rate and its implications on battery capacity.	13 (CO2, PO2)