ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

Semester Final Examination
Course No.: EEE 4701
Course Title: Digital Signal Processing

Winter Semester, A. Y. 2022-2023
Time: 3 Hours
Full Marks: 150

There are 6 (six) questions. Answer all 6 (six) questions. The symbols have their usual meanings. Programmable calculators are not allowed. Marks of each question and corresponding COs and POs are written in the brackets.

1. a) Given the input sequence $x(n)$ and the impulse response $h(n)$, graphically
determine the resulting output. Subsequently, analyze the output and mention the type of the filter.

Figure: 1.1

Figure: 1.2
b) Describe the concept of negative frequency, and illustrate it using appropriate
2. a) For a five-point moving average system deduce and approximately sketch the magnitude and phase response.
b) Show the approximate time domain response for the following four (04) figures:

Figure: 2.1

Figure: 2.2

Figure: 2.3

Figure: 2.4
3. a) For a Band Pass Filter, $H(z)=\frac{1-z^{-2}}{1-\beta(1+\alpha) z^{-1}+\alpha z^{-2}} * \frac{1-\alpha}{2}$,

Where, $\beta=\cos \omega_{0}, \omega_{2}-\omega_{1}=\operatorname{Band}$ Width $(B W)=\cos ^{-1} \frac{2 a}{1+\alpha^{2}}$.
PO1)
$\left[\omega_{0}, \omega_{1}\right.$ and ω_{2} represents center, lower cut-off and higher cut-off frequency respectively]
Find and sketch the poles and zeros for the BPF having, $\omega_{0}=\frac{\pi}{2}, B W=\frac{\pi}{4}$.
b) Illustrate the sequential steps and conduct the essential calculations for designing a

Comb filter aimed at eliminating the DC component. Additionally, present the magnitude response and the pole-zero diagram in the Z-plane.
4. a) Given the input signal $x(n)=\cos (0.3 n)+\cos (0.5 n)$, formulate the design of a Finite Impulse Response (FIR) filter with the specific purpose of rejecting only the $\cos (0.5 n)$ component. Additionally, provide a graphical representation of the designed filter's impulse response, $h(n)$.
b) Formulate a simple second-order band-stop FIR filter, and demonstrate the magnitude and phase response with a thorough derivation and diagram.
5. a) Given a voice signal [$0-4 \mathrm{kHz}$] corrupted by 1 kHz and 2 kHz signals, and utilizing a sampling frequency of 12 kHz , approximately design a filter to eliminate those corrupted signals. Begin by strategically placing the required poles and zeros in the z-plane. Subsequently, illustrate the impulse response and magnitude response for the designed system.
b) Based on the provided z-plane representation (Figure: 5), evaluate and sketch the estimated magnitude response.13 12
(CO2,
\square12

Figure: 5
6. a) Given the discrete signal $x(n)=\cos (\omega n)$ with ω and F as specified, where $\mathrm{F}=2$
$\mathrm{Hz}, \mathrm{Fs}=8 \mathrm{~Hz}$, and $\mathrm{N}=8$, determine and graphically represent the magnitude spectrum $|X(k)|$.
b) Given that,

$$
x(n)=\left\{\begin{align*}
1 / 3, & \text { for } n=0,1,2 \\
0, & \text { otherwise }
\end{align*}\right.
$$

For $\mathrm{N}=10$, derive $X(k)$ and sketch the magnitude response of the system.

